Refine Your Search

Topic

Search Results

Journal Article

A Methodology for Investigating and Modelling Laser Clad Bead Geometry and Process Parameter Relationships

2014-04-01
2014-01-0737
Laser cladding is a method of material deposition through which a powdered or wire feedstock material is melted and consolidated by use of a laser to coat part of a substrate. Determining the parameters to fabricate the desired clad bead geometry for various configurations is problematic as it involves a significant investment of raw materials and time resources, and is challenging to develop a predictive model. The goal of this research is to develop an experimental methodology that minimizes the amount of data to be collected, and to develop a predictive model that is accurate, adaptable, and expandable. To develop the predictive model of the clad bead geometry, an integrated five-step approach is presented. From the experimental data, an artificial neural network model is developed along with multiple regression equations.
Journal Article

Ferritic Nitrocarburizing of SAE 1010 Plain Carbon Steel Parts

2015-04-14
2015-01-0601
Ferritic nitrocarburizing offers excellent wear, scuffing, corrosion and fatigue resistance by producing a thin compound layer and diffusion zone containing ε (Fe2-3(C, N)), γ′ (Fe4N), cementite (Fe3C) and various alloy carbides and nitrides on the material surface. It is a widely accepted surface treatment process that results in smaller distortion than carburizing and carbonitriding processes. However this smaller distortion has to be further reduced to prevent the performance issues, out of tolerance distortion and post grinding work hours/cost in an automotive component. A numerical model has been developed to calculate the nitrogen and carbon composition profiles of SAE 1010 torque converter pistons during nitrocarburizing treatment. The nitrogen composition profiles are modeled against the part thickness to predict distortion.
Technical Paper

Automated Generation of AUTOSAR ECU Configurations Using Xtend: Watchdog Driver Example

2020-04-14
2020-01-1335
Automotive Open System Architecture (AUTOSAR) is a system-level standard that is formed by the worldwide partnership of the automotive manufacturers and suppliers who are working together to develop a standardized Electrical and Electronic (E/E) framework and architecture for automobiles. The AUTOSAR methodology has two main activities: system configuration and the Electronic Control Unit (ECU) configuration. The system configuration is the mapping of the software components to the ECUs based on the system requirements. The ECU configuration process is an important part of the ECU software integration and generation. ECU specific information is extracted from the system configuration description and all the necessary information for the implementation such as tasks, scheduling, assignments of the runnables to tasks and configuration of the Basic Software (BSW) modules, are performed. The ECU configuration process involves configuring every single module of the AUTOSAR architecture.
Journal Article

Methods for Evaluating the Functional Work Space for Machine Tools and 6 Axis Serial Robots

2016-04-05
2016-01-0338
The ‘boundary of space’ model representing all possible positions which may be occupied by a mechanism during its normal range of motion (for all positions and orientations) is called the work envelope. In the robotic domain, it is also known as the robot operating envelope or workspace. Several researchers have investigated workspace boundaries for different degrees of freedom (DOF), joint types and kinematic structures utilizing many approaches. The work envelope provides essential boundary information, which is critical for safety and layout concerns, but the work envelope information does not by itself determine the reach feasibility of a desired configuration. The effect of orientation is not captured as well as the coupling related to operational parameters. Included in this are spatial occupancy concerns due to linking multiple kinematic chains, which is an issue with multi-tasking machine tools, and manufacturing cells.
Journal Article

A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing Systems

2016-04-05
2016-01-0337
Contemporary manufacturing systems are still evolving. The system elements, layouts, and integration methods are changing continuously, and ‘collaborative robots’ (CoBots) are now being considered as practical industrial solutions. CoBots, unlike traditional CoBots, are safe and flexible enough to work with humans. Although CoBots have the potential to become standard in production systems, there is no strong foundation for systems design and development. The focus of this research is to provide a foundation and four tier framework to facilitate the design, development and integration of CoBots. The framework consists of the system level, work-cell level, machine level, and worker level. Sixty-five percent of traditional robots are installed in the automobile industry and it takes 200 hours to program (and reprogram) them.
Journal Article

A Linkage Based Solution Approach for Determining 6 Axis Serial Robotic Travel Path Feasibility

2016-04-05
2016-01-0336
When performing trajectory planning for robotic applications, there are many aspects to consider, such as the reach conditions, joint and end-effector velocities, accelerations and jerk conditions, etc. The reach conditions are dependent on the end-effector orientations and the robot kinematic structure. The reach condition feasibility is the first consideration to be addressed prior to optimizing a solution. The ‘functional’ work space or work window represents a region of feasible reach conditions, and is a sub-set of the work envelope. It is not intuitive to define. Consequently, 2D solution approaches are proposed. The 3D travel paths are decomposed to a 2D representation via radial projections. Forward kinematic representations are employed to define a 2D boundary curve for each desired end effector orientation.
Journal Article

The Effect of Backing Profile on Cutting Blade Wear during High-Volume Production of Carbon Fiber-Reinforced Composites

2018-04-03
2018-01-0158
Carbon fiber sheet molding compound (SMC) is an attractive material for automotive lightweighting applications, but several issues present themselves when adapting a process developed for glass fiber composites to instead use carbon fibers. SMC is a discontinuous fiber material, so individual carbon fiber tows must be chopped into uniform rovings before being compounded with the resin matrix. Rotary chopping is one such method for producing rovings, but high wear rates are seen when cutting carbon fibers. Experiments were performed to investigate the wear progression of cutting blades during rotary carbon fiber chopping. A small rotary chopper with a polyurethane (PU) backing and thin, hardened steel blades was used to perform extended wear tests (120,000 chops, or until failure to reliably chop tows) to simulate the lifespan of blades during composite material production.
Journal Article

Plasmonic in Metallic Nanostructures – Fabrication, Characterization and Applications in Surface-Enhanced Spectroscopy

2008-04-14
2008-01-1267
We are witnessing a rapid and ongoing expansion of nanoscience, driven by potential applications in advanced materials and nanotechnology. There is a race to develop techniques that may allow controlling the size, shape of nanostructures that can allow the tuning of their optical and electronic properties. Plasmonics is a field that encompasses and profits from the optical enhancement in nanostructures that support plasmon excitations. One of these new techniques is surface-enhanced Raman scattering (SERS), commonly used for nanostructure characterization. In the present report, we present a theoretical model for plasmon excitation and electric field enhancement that help to provide an explanation for the special features observed in experimental SERS. Two sets of experimental results are discussed illustrating the make out of the signature of the plasmonics producing the optical enhancement.
Journal Article

Simulation of the Axial Cutting Deformation of AA6061-T6 Round Tubes Utilizing Eulerian and Mesh Free Finite Element Formulations

2008-04-14
2008-01-1117
Experimental and numerical studies have been completed on the deformation behaviour of round AA6061-T6 aluminum extrusions during an axial cutting deformation mode employing both curved and straight deflectors to control the bending deformation of petalled side walls. Round extrusions of length 200 mm with a nominal wall thickness of 3.175 mm and an external diameter of 50.8 mm were considered. A heat treated 4140 steel alloy cutter and deflectors, both straight and curved, were designed and manufactured for the testing considered. The four blades of the cutter had an approximate average thickness of 1.00 mm which were designed to penetrate through the round AA6061-T6 extrusions. Experimental observations illustrated high crush force efficiencies of 0.82 for the extrusions which experienced the cutting deformation mode with the deflectors. Total energy absorption during the cutting process was approximately 5.48 kJ.
Journal Article

Rotary Fatigue Analysis of Forged Magnesium Road Wheels

2008-04-14
2008-01-0211
Fatigue analysis incorporating explicit finite element simulation was conducted on a forged magnesium wheel model where a rotating bend moment was applied to the hub to simulate rotary fatigue testing. Based on wheel fatigue design criteria and a developed fatigue post-processor, the safety factor of fatigue failure was calculated for each finite element. Fatigue failure was verified through experimental testing. Design modifications were proposed by increasing the spoke thickness. Further numerical and experimental testing indicated that the modified design passed the rotary fatigue test.
Journal Article

Comparison of Austempering and Quench-and-Tempering Processes for Carburized Automotive Steels

2013-04-08
2013-01-0173
Carburized parts often see use in powertrain components for the automotive industry. These parts are commonly quenched and tempered after the carburizing process. The present study compared the austempering heat treatment to the traditional quench-and-temper process for carburized parts. Samples were produced from SAE 8620, 4320, and 8822 steels and heat treated across a range of conditions for austempering and for quench-and-tempering. Distortion was examined through the use of Navy C-Ring samples. Microstructure, hardness, and Charpy toughness were also examined. X-ray diffraction was used to compare the residual stress found in the case of the components after the quench-and-temper and the austempering heat treatments. Austempering samples showed less distortion and higher compressive residual stresses, while maintaining comparable hardness values in both case and core. Toughness measurements were also comparable between both processes.
Technical Paper

Wear Performances of Gray Cast Iron Brake Rotor with Plasma Electrolytic Aluminating Coating against Different Pads

2020-10-05
2020-01-1623
Gray cast iron brake rotor experiences substantial wear during braking and contributes largely to the wear debris emissions. Surface coating on the gray cast iron rotor represents a trending approach dealing with the problems. In this research, a new plasma electrolytic aluminating (PEA) process was used for preparing an alumina-based ceramic coating with metallurgical bonding to the gray cast iron. Three different types of brake pads (ceramic, semi-metallic and non asbestos organic (NAO)) were used for tribotests. Performances of PEA coatings vs. different brake pad materials were comparatively investigated with respect to their coefficients of friction (COFs) and wear. The PEA-coated brake rotor has a dimple-like surface which promotes the formation of a thin transferred film to protect the rotor from wear. The transferred film materials come from the wear debris of the pads. The secondary plateaus are regenerated on the brake pads through compacting wear debris of the pads.
Technical Paper

Performance Study of an Innovative Collaborative Robot Gripper Design on Different Fabric Pick and Place Scenarios

2020-04-14
2020-01-1304
Light-weighting fiber composite materials introduced to reduce vehicle mass and known as innovative materials research activities since they provide high specific stiffness and strength compared to contemporary engineering materials. Nonetheless, there are issues related automation strategies and handling methods. Material handling of flexible textile/fiber components is a process bottleneck and it is currently being performed by setting up multi-stage manual operations for hand layups. Consequently, the long-term research objective is to develop semi-automated pick and place processes for flexible materials utilizing collaborative robots within the process. The immediate research is to experimentally validate innovatively designed grippers for efficient material pick and place tasks.
Technical Paper

Identification of Damage Parameters Using Virtual Fields Method and Finite Element Model Updating

2007-04-16
2007-01-0999
Whole field displacement/strain measurement of automotive components can be done efficiently by digital image correlation based technique. Inverse problems with this kind of input data, such as the identification of damage parameters/effective modulus in different part of a component, can be pursued by either virtual fields method or finite element model updating. In this paper, the two methods are applied to the identification of a tension plate with a circular hole, and different aspects of the two methods are discussed. It is found that the success of virtual fields method relies on the choice of a set of optimal virtual displacement fields; finite element model updating, on the other hand, can be applied to any geometry and any load condition, and can also be applied to problems where only limited number of measurements are available. However, its performance relies on the choice of optimization algorithms.
Technical Paper

Active Four Wheel Brake Proportioning for Improved Performance and Safety

2008-04-14
2008-01-1224
A vehicle undergoing longitudinal or lateral accelerations experiences load transfer, dynamically changing the normal load carried by each tire. Conventional braking systems are designed only to work adequately over a large range of conditions, but often ignore the dynamic state of the tire's normal load. Fortunately, new developments in braking system hardware give designers more control over the application of braking pressures. By identifying the tires that carry increased normal load, and biasing the braking system toward those tires, total braking force can be increased. The purpose of this research is to investigate advantages of open-loop load transfer based active brake pressure distribution. By estimating the tractive ability of the tires as a function of measurable vehicle conditions, brake pressure can be applied in proportions appropriate for the current dynamic state of the vehicle, referred to as Active Brake Proportioning (ABP).
Technical Paper

Separation and Liberation Factors in Designing for Automotive Materials Recovery

2004-03-08
2004-01-0471
One critical aspect of design-for-environment efforts is to increase the effectiveness of materials recovery from end-of-life vehicles. Recovery itself depends on both the amount of material recovered and the purity of the material stream. Shredding, and screening are often used to separate recyclable materials from wastes. However, with the increasing amount of composite components, particularly those made from plastics, separation processes may be inadequate. Instead, liberation processes, which reduce the physical joints between materials, are also important. In this research, samples of ABS and PVC plastics were assembled into various configurations, ground up, and then characterized by their size distributions and degrees of liberation. Two primary fastening methods - adhesive and riveting - were used to simulate how plastic components would be actually attached together.
Technical Paper

Factors Affecting the Tensile Strength of Linear Vibration Welds of Dissimilar Nylons

2002-03-04
2002-01-0604
Three different pairs of high melting temperature and low melting temperature nylons have been welded together using three different design of experiment welding process parameter matrices. An unorthodox analysis of these has revealed that there is a general increase in strength as the total welding sliding distance of the two surfaces increases. This is not surprising. The analysis also reveals that, for a given sliding distance, the vibration amplitude should be large, which shortens the welding time. This strategy produces shorter cycle times and stronger welds, according to the data obtained in these test sets.
Technical Paper

Laser Welding of Elastomers to Polypropylene

2003-03-03
2003-01-1134
The effects of varying laser-welding parameters were studied for the welding of the thermoplastic elastomer EPDM to glass filled polypropylene. Through-thickness scanning transmission welding (contour welding) was carried out with a diode laser with a wavelength of 940 nm using various power levels up to 150W and line speeds up to 2500 mm/minute. The observable weld attributes: weld strengths, weld widths, and failure modes, have been tabulated and discussed.
Technical Paper

Investigating Process Parameters and Microhardness Predictive Modeling Approaches for Single Bead 420 Stainless Steel Laser Cladding

2017-03-28
2017-01-0283
Laser cladding is a novel process of surface coating, and researchers in both academia and industry are developing additive manufacturing solutions for large, metallic components. There are many interlinked process parameters associated with laser cladding, which may have an impact on the resultant microhardness profile throughout the bead zone. A set of single bead laser cladding experiments were done using a 4 kW fiber laser coupled with a 6-axis robotic arm for 420 martensitic stainless steel powder. A design of experiments approach was taken to explore a wide range of process parameter settings. The goal of this research is to determine whether robust predictive models for hardness can be developed, and if there are predictive trends that can be employed to optimize the process settings for a given set of process parameters and microhardness requirements.
Technical Paper

Experimental Observations on the Mechanical Response of AZ31B Magnesium and AA6061-T6 Aluminum Extrusions Subjected to Compression and Cutting Modes of Deformation

2017-03-28
2017-01-0377
Cylindrical extrusions of magnesium AZ31B were subjected to quasi-static axial compression and cutting modes of deformation to study this alloy’s effectiveness as an energy absorber. For comparison, the tests were repeated using extrusions of AA6061-T6 aluminum of the same geometry. For the axial compression tests, three different end geometries were considered, namely (1) a flat cutoff, (2) a 45 degree chamfer, and (3) a square circumferential notch. AZ31B extrusions with the 45 degree chamfer produced the most repeatable and stable deformation of a progressive fracturing nature, referred to as sharding, with an average SEA of 40 kJ/kg and an average CFE of 45 %, which are nearly equal to the performance of the AA6061-T6. Both the AZ31B specimens with the flat cutoff and the circumferential notch conditions were more prone to tilt mid-test, and lead to an unstable helical fracture, which significantly reduced the SEA.
X