Refine Your Search

Topic

Author

Search Results

Video

Codes and Standards – Global Harmonization

2011-11-18
Career development is no longer something you focus on in your twenties and are set for life, it is ongoing and constant. New technologies, globalization and the world-wide competition for jobs demand that we continue to grow our skills and knowledge throughout our life. This session will provide you with tools to help you meet this demand as an engineering professional. Participants will create a personal mission statement and set career goals, identify the best way to research new opportunities and build their network while also crafting a personal brand with consistent messaging. Organizer Martha Schanno, SAE International Panelist Caryn Mateer, Transformational Leaders Intl. Kathleen Riley, Transformational Leaders Intl.
Video

Impact of Technology on Electric Drive Fuel Consumption and Cost

2012-05-25
In support of the U.S Department of Energy's Vehicle Technologies Program, numerous vehicle technology combinations have been simulated using Autonomie. Argonne National Laboratory (Argonne) designed and wrote the Autonomie modeling software to serve as a single tool that could be used to meet the requirements of automotive engineering throughout the development process, from modeling to control, offering the ability to quickly compare the performance and fuel efficiency of numerous powertrain configurations. For this study, a multitude of vehicle technology combinations were simulated for many different vehicles classes and configurations, which included conventional, power split hybrid electric vehicle (HEV), power split plug-in hybrid electric vehicle (PHEV), extended-range EV (E-REV)-capability PHEV, series fuel cell, and battery electric vehicle.
Journal Article

A Preliminary Investigation into the Mitigation of Plug-in Hybrid Electric Vehicle Tailpipe Emissions Through Supervisory Control Methods

2010-04-12
2010-01-1266
Plug-in hybrid electric vehicle (PHEV) technologies have the potential for considerable petroleum consumption reductions, possibly at the expense of increased tailpipe emissions due to multiple “cold” start events and improper use of the engine for PHEV specific operation. PHEVs operate predominantly as electric vehicles (EVs) with intermittent assist from the engine during high power demands. As a consequence, the engine can be subjected to multiple cold start events. These cold start events may have a significant impact on the tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current hybrid electric vehicles (HEVs), the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts.
Journal Article

Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle

2014-04-01
2014-01-0818
Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes.
Journal Article

Impact of Electric Drive Vehicle Technologies on Fuel Efficiency to Support 2017-2025 CAFE Regulations

2014-04-01
2014-01-1084
Manufacturers have been considering various technology options to improve vehicle fuel economy. Some of the most promising technologies are related to vehicle electrification. To evaluate the benefits of vehicle electrification to support the 2017-2025 CAFE regulations, a study was conducted to simulate many of the most common electric drive powertrains currently available on the market: 12V Micro Hybrid Vehicle (start/stop systems), Belt-integrated starter generator (BISG), Crank-integrated starter generator (CISG), Full Hybrid Electric Vehicle (HEV), PHEV with 20-mile all-electric range (AER) (PHEV20), PHEV with 40-mile AER (PHEV40), Fuel-cell HEV and Battery Electric vehicle with 100-mile AER (EV100). Different vehicle classes were also analyzed in the study process: Compact, Midsize, Small SUV, Midsize SUV and Pickup. This paper will show the fuel displacement benefit of each powertrain across vehicle classes.
Journal Article

Simulated Real-World Energy Impacts of a Thermally Sensitive Powertrain Considering Viscous Losses and Enrichment

2015-04-14
2015-01-0342
It is widely understood that cold ambient temperatures increase vehicle fuel consumption due to heat transfer losses, increased friction (increased viscosity lubricants), and enrichment strategies (accelerated catalyst heating). However, relatively little effort has been dedicated to thoroughly quantifying these impacts across a large set of real world drive cycle data and ambient conditions. This work leverages experimental dynamometer vehicle data collected under various drive cycles and ambient conditions to develop a simplified modeling framework for quantifying thermal effects on vehicle energy consumption. These models are applied over a wide array of real-world usage profiles and typical meteorological data to develop estimates of in-use fuel economy. The paper concludes with a discussion of how this integrated testing/modeling approach may be applied to quantify real-world, off-cycle fuel economy benefits of various technologies.
Technical Paper

Numerical Analysis of Fuel Impacts on Advanced Compression Ignition Strategies for Multi-Mode Internal Combustion Engines

2020-04-14
2020-01-1124
Multi-mode combustion strategies may provide a promising pathway to improve thermal efficiency in light-duty spark ignition (SI) engines by enabling switchable combustion modes, wherein an engine may operate under advanced compression ignition (ACI) at low load and spark-assisted ignition at high load. The extension from the SI mode to the ACI mode requires accurate control of intake charge conditions, e.g., pressure, temperature and equivalence ratio, in order to achieve stable combustion phasing and rapid mode-switches. This study presents results from computational fluid dynamics (CFD) analysis to gain insights into mixture charge formation and combustion dynamics pertaining to auto-ignition processes. The computational study begins with a discussion of thermal wall boundary condition that significantly impacts the combustion phasing.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Journal Article

Control Analysis and Thermal Model Development for Plug-In Hybrid Electric Vehicles

2015-04-14
2015-01-1157
For electrified vehicles, understanding the impact of temperature on vehicle control and performances becomes more important than before because the vehicle might consume more energy than conventional vehicles due to lack of the engine waste heat. Argonne has tested many advanced vehicles and analyzed the vehicle level control based on the test data. As part of its ongoing effort, Toyota Prius Plug-in Hybrid was tested in thermal environmental chamber, and the vehicle level control and performances are analyzed by observing the test results. The analysis results show that the control of the Plug-in Hybrid Electric Vehicle (PHEV) is similar with Prius Hybrid Electric Vehicle (HEV) when the vehicle is under a charge sustaining mode, and the vehicle tries to consume the electric energy first under a charge depleting mode.
Journal Article

Real-World Thermal Effects on Wheel Assembly Efficiency of Conventional and Electric Vehicles

2016-04-05
2016-01-0236
It is widely understood that cold ambient temperatures negatively impact vehicle system efficiency. This is due to a combination of factors: increased friction (engine oil, transmission, and driveline viscous effects), cold start enrichment, heat transfer, and air density variations. Although the science of quantifying steady-state vehicle component efficiency is mature, transient component efficiencies over dynamic ambient real-world conditions is less understood and quantified. This work characterizes wheel assembly efficiencies of a conventional and electric vehicle over a wide range of ambient conditions. For this work, the wheel assembly is defined as the tire side axle spline, spline housing, bearings, brakes, and tires. Dynamometer testing over hot and cold ambient temperatures was conducted with a conventional and electric vehicle instrumented to determine the output energy losses of the wheel assembly in proportion to the input energy of the half-shafts.
Journal Article

CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel

2017-03-28
2017-01-0550
A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty compression-ignition engine with a gasoline-like fuel that has an anti-knock index (AKI) of 58. The primary goal was to design an optimized combustion system utilizing the high volatility and low sooting tendency of the fuel for improved fuel efficiency with minimal hardware modifications to the engine. The CFD model predictions were first validated against experimental results generated using the stock engine hardware. A comprehensive design of experiments (DoE) study was performed at different operating conditions on a world-leading supercomputer, MIRA at Argonne National Laboratory, to accelerate the development of an optimized fuel-efficiency focused design while maintaining the engine-out NOx and soot emissions levels of the baseline production engine.
Journal Article

Time-Resolved X-Ray Radiography of Spark Ignition Plasma

2016-04-05
2016-01-0640
Understanding the short-lived structure of the plasma that forms between the electrodes of a spark plug is crucial to the development of improved ignition models for SI engines. However, measuring the amount of energy deposited in the gas directly and non-intrusively is difficult, due to the short time scales and small length scales involved. The breakdown of the spark gap occurs at nanosecond time scales, followed by an arc phase lasting a few microseconds. Finally, a glow discharge phase occurs over several milliseconds. It is during the arc and glow discharge phases that most of the heat transfer from the plasma to the electrodes and combustion gases occurs. Light emission can be used to measure an average temperature, but micron spatial resolution is required to make localized measurements.
Journal Article

Assessing the Importance of Radiative Heat Transfer for ECN Spray A Using the Transported PDF Method

2016-04-05
2016-01-0857
The importance of radiative heat transfer on the combustion and soot formation characteristics under nominal ECN Spray A conditions has been studied numerically. The liquid n-dodecane fuel is injected with 1500 bar fuel pressure into the constant volume chamber at different ambient conditions. Radiation from both gas-phase as well as soot particles has been included and assumed as gray. Three different solvers for the radiative transfer equation have been employed: the discrete ordinate method, the spherical-harmonics method and the optically thin assumption. The radiation models have been coupled with the transported probability density function method for turbulent reactive flows and soot, where unresolved turbulent fluctuations in temperature and composition are included and therefore capturing turbulence-chemistry-soot-radiation interactions. Results show that the gas-phase (mostly CO2 ad H2O species) has a higher contribution to the net radiation heat transfer compared to soot.
Journal Article

Numerical Investigation of Two-Phase Flow Evolution of In- and Near-Nozzle Regions of a Gasoline Direct Injection Engine During Needle Transients

2016-04-05
2016-01-0870
This work involves modeling internal and near-nozzle flows of a gasoline direct injection (GDI) nozzle. The Engine Combustion Network (ECN) Spray G condition has been considered for these simulations using the nominal geometry of the Spray G injector. First, best practices for numerical simulation of the two-phase flow evolution inside and the near-nozzle regions of the Spray G injector are presented for the peak needle lift. The mass flow rate prediction for peak needle lift was in reasonable agreement with experimental data available in the ECN database. Liquid plume targeting angle and liquid penetration estimates showed promising agreement with experimental observations. The capability to assess the influence of different thermodynamic conditions on the two-phase flow nature was established by predicting non-flashing and flashing phenomena.
Journal Article

Considerations in Estimating Battery Energy for Hybrid and Electric Vehicles

2012-04-16
2012-01-0660
As batteries become a major component of numerous advanced vehicles, significant efforts have been allocated towards characterizing and estimating battery energy capability over the lifetime of a vehicle. Currently, battery State of Charge (SOC) is one of the primary values used for this characterization; however SOC usage has several issues when implemented in Electric Vehicle (EV), Hybrid Electric Vehicle (HEV), and Plug-In Hybrid Electric Vehicle (PHEV) systems. One of the main issues with reporting battery SOC as a characterization of battery energy capability is that it only gives a percentage of the energy available to the operator. SOC does not accurately represent the true capability or capacity of the battery, and thus fails to account for the impact to capability with respect to battery size, age, and recent operational history.
Journal Article

Life-Cycle Greenhouse Gas and Criteria Air Pollutant Emissions of Electric Vehicles in the United States

2013-04-08
2013-01-1283
While electric vehicles including plug-in hybrid electric vehicles (PHEVs) and battery-powered electric vehicles (BEVs) are considered as promising alternative vehicle/fuel systems to significantly reduce petroleum consumption of the transportation sector, it is important to analyze the emission characteristics and to assess the emission reduction potentials of electric vehicles so that their environmental impacts in terms of climate change, air quality, as well as human health effects could be better understood. To fulfill this objective, we explicitly analyzed the emission characteristics of greenhouse gases (GHG) and criteria air pollutants (CAP, representing VOC, CO, NOx, PM₁₀ and PM₂.₅, and SOx,) of the U.S. power sector, a pivotal upstream sector that impacts the life-cycle GHG and CAP emissions associated with electric vehicles.
Journal Article

Validating Volt PHEV Model with Dynamometer Test Data Using Autonomie

2013-04-08
2013-01-1458
The first commercially available Plug-In Hybrid Electric Vehicle (PHEV), the General Motors (GM) Volt, was introduced into the market in December 2010. The Volt's powertrain architecture provides four modes of operation, including two that are unique and maximize the Volt's efficiency and performance. The electric transaxle has been specially designed to enable patented operating modes both to improve the electric driving range when operating as a battery electric vehicle and to reduce fuel consumption when extending the range by operating with an internal combustion engine (ICE). However, details on the vehicle control strategy are not widely available because the supervisory control algorithm is proprietary. Since it is not possible to analyze the control without vehicle test data obtained from a well-designed Design-of-Experiment (DoE), a highly instrumented GM Volt, including thermal sensors, was tested at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF).
Journal Article

Analysis of Input Power, Energy Availability, and Efficiency during Deceleration for X-EV Vehicles

2013-04-08
2013-01-1473
The recovery of braking energy through regenerative braking is a key enabler for the improved efficiency of Hybrid Electric Vehicles, Plug-in Hybrid Electric, and Battery Electric Vehicles (HEV, PHEV, BEV). However, this energy is often treated in a simplified fashion, frequently using an overall regeneration efficiency term, ξrg [1], which is then applied to the total available braking energy of a given drive-cycle. In addition to the ability to recapture braking energy typically lost during vehicle deceleration, hybrid and plug-in hybrid vehicles also allow for reduced or zero engine fueling during vehicle decelerations. While regenerative braking is often discussed as an enabler for improved fuel economy, reduced fueling is also an important component of a hybrid vehicle's ability to improve overall fuel economy.
Journal Article

Developing a Utility Factor for Battery Electric Vehicles

2013-04-08
2013-01-1474
As new advanced-technology vehicles are becoming more mainstream, analysts are studying their potential impact on petroleum use, carbon emissions, and smog emissions. Determining the potential impacts of widespread adoption requires testing and careful analysis. PHEVs possess unique operational characteristics that require evaluation in terms of actual in-use driving habits. SAE J2841, “Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using 2001 U.S. DOT National Household Travel Survey Data,” published by SAE in 2009 with a revision in 2010, is a guide to using DOT's National Household Travel Survey (NHTS) data to estimate the relative split between driving in charge-depleting (CD) mode and charge-sustaining (CS) mode for a particular PHEV with a given CD range. Without this method, direct comparisons of the merits of various vehicle designs (e.g., efficiency and battery size) cannot be made among PHEVs, or between PHEVs and other technologies.
Journal Article

Development and Implementation of SAE J2953 for AC Charging

2014-04-01
2014-01-0184
The purpose of this paper is to outline the development and implementation of SAE J2953. SAE J2953 contains the requirements and procedures of interoperability testing. Within SAE J2953 interoperability test articles are defined as an Electric Vehicle Supply Equipment (EVSE) paired with a Plug-in Electric Vehicle (PEV). SAE J2953 requires the development and application of test fixtures with the ability to monitor mechanical forces and electrical signals of a charge system without modification or disassembly of the EVSE and PEV under test. Electrical signal monitoring includes pilot, proximity, and line conductors of the SAE J1772 TM AC coupler. This paper will outline the requirements of the fixtures as well as a specific build. Data will be presented showing full implementation of the SAE J2953 procedures including root-cause analysis and standards gap discovery.
X