Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Vehicle Design and Implementation of a Series-Parallel Plug-in Hybrid Electric Vehicle

2013-10-14
2013-01-2492
The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech has achieved the Year 2 goal of producing a 65% functional mule vehicle suitable for testing and refinement, while maintaining the series-parallel plug-in hybrid architecture developed during Year 1. Even so, further design and expert consultations necessitated an extensive redesign of the rear powertrain and front auxiliary systems packaging. The revised rear powertrain consists of the planned Rear Traction Motor (RTM), coupled to a single-speed transmission. New information, such as the dimensions of the high voltage (HV) air conditioning compressor and the P2 motor inverter, required the repackaging of the hybrid components in the engine bay. The P2 motor/generator was incorporated into the vehicle after spreading the engine and transmission to allow for the required space.
Technical Paper

VTool: A Method for Predicting and Understanding the Energy Flow and Losses in Advanced Vehicle Powertrains

2013-04-08
2013-01-0543
A crucial step to designing and building more efficient vehicles is modeling powertrain energy consumption. While accurate modeling is indeed key to effective and efficient design, a fundamental understanding of the powertrain and auxiliary systems that contribute to the energy consumption of a vehicle is equally as important. This paper presents a methodology that has been packaged into a tool, called VTool (short for Vehicle Tool), which can be used to estimate the energy consumption of a vehicle powertrain. The method is intrinsically designed to foster understanding of the vehicle powertrain as it relates to energy consumption and losses while still providing reasonably accurate results. This paper briefly explains the methodology of VTool and demonstrates the capability of VTool as a design tool by presenting 4 example exercises.
Technical Paper

Key Outcomes of Year One of EcoCAR 2: Plugging in to the Future

2013-04-08
2013-01-0554
EcoCAR 2: Plugging In to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 28 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles.
Technical Paper

Development of a Willans Line Rule-Based Hybrid Energy Management Strategy

2022-03-29
2022-01-0735
The pre-prototype development of a simulated rule-based hybrid energy management strategy for a 2019 Chevrolet Blazer RS converted parallel P4 full hybrid is presented. A vehicle simulation model is developed using component bench data and validated using EPA-reported dynamometer fuel economy test data. A combined Willans line model is proposed for the engine and transmission, with hybrid control rules based on efficiency-derived engine power thresholds. Algorithms are proposed for battery state of charge (SOC) management including engine loading and one pedal strategies, with battery SOC maintained within 20% to 80% safe limits and charge balanced behavior achieved. The simulated rule-based hybrid control strategy for the hybrid vehicle has an energy consumption reduction of 20% for the Hot 505, 3.6% for the HwFET, and 12% for the US06 compared to the stock vehicle.
Technical Paper

Evaluating Simulation Driver Model Performance Using Dynamometer Test Criteria

2022-03-29
2022-01-0530
The influence of driver modeling and drive cycle target speed trace modification on vehicle dynamics within energy consumption simulations is studied. EPA dynamometer speed error criteria and the SAE J2951 Drive Quality Evaluation for Chassis Dynamometer Testing standard are applied to simulation outputs as proposed components of simulation validation, providing guidelines for acceptable vehicle speed outputs and allowing comparison of simulation results to reported EPA dynamometer test statistics. The combined effect of driver model tuning and drive cycle interpolation methods is investigated for the UDDS, HwFET and US06 drive cycles, with EPA-specified linearly interpolated speed trace and a PI controller driver as a baseline result.
Technical Paper

Powertrain Design to Meet Performance and Energy Consumption Goals for EcoCAR 3

2014-04-01
2014-01-1915
The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech is excited about the opportunity to apply for participation in the next Advanced Vehicle Technology Competition. EcoCAR 3 is a new four year competition sponsored by the Department of Energy and General Motors with the intention of promoting sustainable energy in the automotive sector. The goal of the competition is to guide students from universities in North America to create new and innovative technologies to reduce the environmental impact of modern day transportation. EcoCAR 3, like its predecessors, will give students hands-on experience in designing and implementing advanced technologies in a setting similar to that of current production vehicles.
Technical Paper

Development & Integration of a Charge Sustaining Control Strategy for a Series-Parallel Plug-In Hybrid Electric Vehicle

2014-10-13
2014-01-2905
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2012-2014 EcoCAR 2: Plugging in to the Future Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM) and the U.S. Department of Energy (DOE). The goals of the competition are to reduce well-to-wheel (WTW) petroleum energy consumption (PEU), WTW greenhouse gas (GHG) and criteria emissions while maintaining vehicle performance, consumer acceptability and safety. Following the EcoCAR 2 Vehicle Development Process (VDP), HEVT is designing, building, and refining an advanced technology vehicle over the course of the three year competition using a 2013 Chevrolet Malibu donated by GM as a base vehicle.
Journal Article

Unified Net Willans Line Model for Estimating the Energy Consumption of Battery Electric Vehicles

2023-04-11
2023-01-0348
Due to increased urgency regarding environmental concerns within the transportation industry, sustainable solutions for combating climate change are in high demand. One solution is a widespread transition from internal combustion engine vehicles (ICEVs) to battery electric vehicles (BEVs). To facilitate this transition, reliable energy consumption modeling is desired for providing quick, high-level estimations for a BEV without requiring extensive vehicle and computational resources. Therefore, the goal of this paper is to create a simple, yet reliable vehicle model, that can estimate the energy consumption of most electric vehicles on the market by using parameter normalization techniques. These vehicle parameters include the vehicle test weight and performance to obtain a unified net Willans line to describe the input/output power using a linear relationship.
Journal Article

Willans Line Bidirectional Power Flow Model for Energy Consumption of Electric Vehicles

2022-03-29
2022-01-0531
A new and unique electric vehicle powertrain model based on bidirectional power flow for propel and regenerative brake power capture is developed and applied to production battery electric vehicles. The model is based on a Willans line model to relate power input from the battery and power output to tractive effort, with one set of parameters (marginal efficiency and an offset loss) for the bidirectional power flow through the powertrain. An electric accessory load is included for the propel, brake and idle phases of vehicle operation. In addition, regenerative brake energy capture is limited with a regen fraction (where the balance goes to friction braking), a power limit, and a low-speed cutoff limit. The purpose of the model is to predict energy consumption and range using only tractive effort based on EPA published road load and test mass (test car list data) and vehicle powertrain parameters derived from EPA reported unadjusted UDDS and HWFET energy consumption.
X