Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

Semi-Empirical CFD Transient Simulation of Engine Air Filtration Systems

2016-04-05
2016-01-1368
To improve fuel efficiency and facilitate handling of the vehicle in a dense city environment, it should be as small as possible given its intended application. This downsizing trend impacts the size of the engine bay, where the air filter box has to be packed in a reduced space, still without increased pressure drop, reduced load capacity nor lower filtering efficiency. Due to its flexibility and reduced cost, CFD simulations play an important role in the optimization process of the filter design. Even though the air-flow through the filter box changes as the dust load increases, the current modeling framework seldom account for such time dependence. Volvo Car Corporation presents an industrial affordable model to solve the time-dependent dust load on filter elements and calculate the corresponding flow behavior over the life time of the air filter box.
Technical Paper

Body and Component Accuracy in Assembly Systems

1998-09-29
982269
To give the customer an immediate impression of quality several of criteria must be fulfilled such as styling, paint finish and fitting of outer panels/closures. Therefore, higher demands on geometrical quality e.g. stability for both exterior and interior are needed. The structural part of the car body is the key element for success. Beside the visual impression, lack of noise and vibrations during driving can convince a potential buyer to become an actual customer. To achieve this, car manufacturers have to draw up an overall strategy in combination with proper working methods to be able to guarantee a stable geometrical output throughout the entire development process and during series production over the lifetime of the vehicle. On a simultaneous engineering basis, the OEM, the system/component- and the process suppliers (for the industrial system from press shop to final assembly) have to adopt a common measurement strategy.
Technical Paper

Analytical Methods for Durability in the Automotive Industry - The Engineering Process, Past, Present and Future

2001-03-05
2001-01-4075
In the early days of the automotive industry, durability and reliability were hit or miss affairs, with end-users often being the first to know about any durability problems - and in many cases forming an essential part of the development process. More recently, automotive companies have developed proving ground and laboratory test procedures that aim to simulate typical or severe customer usage. These test procedures have been used to develop the products through a series of prototypes and to prove the durability of the product prior to release in the marketplace. Now, commercial pressures and legal requirements have led to increasing reliance on CAE methods, with fatigue life prediction having a central role in the durability engineering process.
Technical Paper

Supporting Welding Methods for Future Light Weight Steel Car Body Structures

2002-07-09
2002-01-2091
In the continuous struggle to improve car body properties, and at the same time reduce the weight of the structure, new materials and body concepts are being evaluated. In competition with more self-evident lightweight materials such as aluminium and plastic composites, new and different grades of high-strength steels with various surface coatings are being introduced. From experience it is known that to be able to weld and join these steel grades under high-volume conditions, it is necessary to perform comprehensive testing to establish those assembly parameters which give a superior and reliable weld quality. To meet the demands of cost-effective low volume production, we can notice a tendency to move away from traditional uni-body concepts and into the direction of space-frame structures. These can preferably be manufactured out of high-strength steels by using production methods like roll-forming, hydro-forming and hot-forming.
Technical Paper

Open-Interface Definitions for Automotive Systems1 Application to a Brake by Wire System

2002-03-04
2002-01-0267
Today automotive system suppliers develop more-or-less independent systems, such as brake, power steering and suspension systems. In the future, car manufacturers like Volvo will build up vehicle control systems combining their own algorithms with algorithms provided by automotive system suppliers. Standardization of interfaces to actuators, sensors and functions is an important enabler for this vision and will have major consequences for functionality, prices and lead times, and thus affects both vehicle manufacturers and automotive suppliers. The investigation of the level of appropriate interfaces, as part of the European BRAKE project, is described here. Potential problems and consequences are discussed from both a technical and a business perspective. This paper provides a background on BRAKE and on the functional decomposition upon which the interface definitions are based. Finally, the interface definitions for brake system functionality are given.
Technical Paper

Modeling and Simulation of Peak Load Events Using Adams - Driving Over a Curb and Skid Against a Curb

2011-04-12
2011-01-0733
The durability peak load events Driving over a curb and Skid against a curb have been simulated in Adams for a Volvo S80. Simulated responses in the front wheel suspension have been validated by comparison with measurements. Due to the extreme nature of the peak load events, the component modeling is absolutely critical for the accuracy of the simulations. All components have to be described within their full range of excitation. Key components and behaviors to model have been identified as tire with wheel strike-through, contacts between curb and tire and between curb and rim, flexibility of structural components, bump stops, bushings, shock absorbers, and camber stiffness of the suspension. Highly non-linear component responses are captured in Adams. However, since Adams only allows linear material response for flexible bodies, the proposed methods to simulate impact loads are only valid up to small, plastic strains.
Technical Paper

Comparing Dynamic Programming Optimal Control Strategies for a Series Hybrid Drivetrain

2017-10-08
2017-01-2457
A two-state forward dynamic programming algorithm is evaluated in a series hybrid drive-train application with the objective to minimize fuel consumption when look-ahead information is available. The states in the new method are battery state-of-charge and engine speed. The new method is compared to one-state dynamic programming optimization methods where the requested generator power is found such that the fuel consumption is minimized and engine speed is given by the optimum power-speed efficiency line. The other method compared is to run the engine at a given operating point where the system efficiency is highest, finding the combination of engine run requests over the drive-cycle that minimizes the fuel consumption. The work has included the engine torque and generator power as control signals and is evaluated in a full vehicle-simulation model based on the Volvo Car Corporation VSIM tool.
Technical Paper

Surface Flow Visualization on a Full-Scale Passenger Car with Quantitative Tuft Image Processing

2016-04-05
2016-01-1582
Flow visualization techniques are widely used in aerodynamics to investigate the surface trace pattern. In this experimental investigation, the surface flow pattern over the rear end of a full-scale passenger car is studied using tufts. The movement of the tufts is recorded with a DSLR still camera, which continuously takes pictures. A novel and efficient tuft image processing algorithm has been developed to extract the tuft orientations in each image. This allows the extraction of the mean tuft angle and other such statistics. From the extracted tuft angles, streamline plots are created to identify points of interest, such as saddle points as well as separation and reattachment lines. Furthermore, the information about the tuft orientation in each time step allows studying steady and unsteady flow phenomena. Hence, the tuft image processing algorithm provides more detailed information about the surface flow than the traditional tuft method.
Technical Paper

Multidisciplinary Simulation Model for the Balancing of Powertrain Combustion, Control and Components for Optimal Fuel Consumption, Emissions, Cost and Performance for a Diesel Engine Powered Passenger Car

2012-09-10
2012-01-1572
Passenger cars equipped with diesel engines will meet challenging emission legislation for the coming decade, with introduction of Euro6 and Euro7, which comprises reduced NOX emissions and possibly new driving cycles including off-cycle limits. The technology measures to meet these legislative limits comprise a broad spectrum of engine and aftertreatment, i.e., engine measures such as improved fuel injection with respect to mass and timing, improved exhaust gas recirculation, improved warm-up and reduced friction, as well as aftertreatment measures such as selective catalytic reduction and lean NOX trap in combination with diesel particulate filter, and the thereby associated engine control. The resulting technology matrix is therefore large, and calls for a multidisciplinary simulation approach for appropriate selection and optimization of technology and control with the objectives and constraints of emissions, fuel consumption, performance and cost.
Technical Paper

Protocol Membership in Dependable Distributed Communication Systems - A Question of Brittleness

2003-03-03
2003-01-0108
This paper describes results from fault injection experiments using heavy ions in the time-triggered communication protocol for safety critical distributed systems (TTP/C, C1 implementation). The observed results show that arbitrary faults in one erroneous node could cause inconsistencies in the cluster and thus jeopardize correctly working nodes and the whole communication system. The described inconsistencies resulted from either asymmetric value faults or slightly out of specification timing faults. This system behavior can be partly explained by too strict constraints on the fault handling algorithms using the membership agreement protocol.
Technical Paper

Digital Human Models' Appearance Impact on Observers' Ergonomic Assessment

2005-06-14
2005-01-2722
The objective of this paper is to investigate whether different appearance modes of the digital human models (DHM or manikins) affect the observers when judging a working posture. A case where the manikin is manually assembling a battery in the boot with help of a lifting device is used in the experiment. 16 different pictures were created and presented for the subjects. All pictures have the same background, but include a unique posture and manikin appearance combination. Four postures and four manikin appearances were used. The subjects were asked to rank the pictures after ergonomic assessment based on posture of the manikin. Subjects taking part in the study were either manufacturing engineering managers, simulation engineers or ergonomists. Results show that the different appearance modes affect the ergonomic judgment. A more realistic looking manikin is rated higher than the very same posture visualized with a less natural appearance.
Technical Paper

SULEV Emission Technologies for a Five Cylinder N/A Engine

2000-03-06
2000-01-0894
The new SULEV legislation for passenger cars with gasoline powered engines, which will be introduced with the California LEV II program in the year 2003, requires a further development of the exhaust aftertreatment system. Three fundamentally different system approaches, each with very high efficiency in reducing cold start hydrocarbons, will be discussed in this paper. Vehicle test results will be presented to illustrate the potential of the respective systems towards the SULEV requirements. Durability aspects are also considered since an increased durability of 120 000 and even 150 000 miles is imposed by the legislation.
Technical Paper

Multi-material Approach with Integrated Joining Technologies in the New Volvo S80

1999-09-28
1999-01-3147
In May 1998 Volvo launched its most exclusive car model so far, the Volvo S80, which is aimed to compete with upper luxury segment products. The car is produced in the new production facility in the Torslanda plant in Sweden. Among the more highlighted features were a transversely mounted in-line six cylinder engine with a specially designed gearbox, electronic multiplex technology with 18 computers in the network, and safety features like stability and traction control (STC), front seats with integrated antiwhiplash system (WHIPS) and inflatable curtain (IC) for improved side impact protection. To fulfill the product's high demands on safety, quality and environmental care, the design, materials selection and assembly of the car body with high precision had to be very carefully engineered. As in previous product-/process development a holistic and concurrent engineering approach was necessary.
Journal Article

Snow Contamination of Simplified Automotive Bluff Bodies: A Comparison Between Wind Tunnel Experiments and Numerical Modeling

2022-03-29
2022-01-0901
We describe experiments and numerical modeling of snow surface contamination on two simplified automotive bluff bodies: The Ahmed body and a wedge. The purpose was twofold: 1) To obtain well defined experimental results of snow contamination on simple geometries; 2) To propose a numerical modeling approach for snow contamination. The experiments were performed in a climatic wind tunnel using a snow cannon at −15 °C and the results show that the snow accumulation depends on the aerodynamics of the studied bluff bodies. Snow accumulates on surfaces in proximity to the aerodynamic wakes of the bodies and characteristic snow patterns are obtained on side surfaces. The numerical modeling approach consisted of an aerodynamic setup coupled with Lagrangian particle tracking. Particles were determined to adhere or rebound depending on an adhesion model combined with a resuspension criterion.
X