Refine Your Search

Topic

Search Results

Journal Article

Operational Loads Monitoring of a Fleet of Beech 1900D Aircraft

2008-08-19
2008-01-2232
Presented here are analyses and statistical summaries of data collected from 11,299 flight operations recorded on 6 BE-1900D aircraft during routine commuter service over a period of three years. Basic flight parameters such as airspeed, altitude, flight duration, etc. are shown in a form that allows easy comparison with the manufacturer's design criteria. Lateral ground loads are presented for ground operations. Primary emphasis is placed on aircraft usage and flight loads. Maneuver and gust loads are presented for different flight phases and for different altitude bands. In addition, derived gust velocities and various coincident flight events are shown and compared with published operational limits.
Technical Paper

Experimental Investigation of a Bleed Air Ice Protection System

2007-09-24
2007-01-3313
The work presented in this paper is part of a long-term research program to explore methods for improving bleed air system performance. Another objective of this research is to provide detailed experimental data for the development and validation of simulation tools used in the design and analysis of bleed air systems. A business jet wing was equipped with an inner-liner hot air ice protection system and was extensively instrumented for documenting system thermal performance. The wing was tested at the NASA Glenn Icing Research Tunnel (IRT) for representative in-flight icing conditions. Data obtained include bleed air supply and exhaust flow properties, wing leading edge skin temperatures, temperatures and pressures in the interior passages of the bleed air system, flow properties inside the piccolo tube, photos of run back ice shapes and ice shape traces. Selected experimental results for a warm hold icing condition are presented in this paper.
Technical Paper

Parametric Experiment of Large Droplet Dynamics

2007-09-24
2007-01-3346
An experimental study was performed to investigate large droplet dynamics in the vicinity of an airfoil. The investigation was conducted using the NASA Glenn Droplet Imaging Flow Tunnel (DrIFT). Mono-dispersed large droplets were released at the tunnel inlet and accelerated toward an airfoil that was mounted in the test section. The dynamic behavior of a droplet's encounter with the airfoil, which may involve droplet distortion, break-up, impingement and splashing, was recorded using a high-speed imaging system. The effects of the droplet size, tunnel velocity and airfoil configuration on the droplet dynamics were investigated in a parametric study. The droplet sizes used in the experimental study were 96 and 375 μm whereas tunnel velocities were varied from 80 to 130 mph. Three different airfoil geometries were used in the experimental study; a ‘clean’ and ‘iced’ airfoil, and a ‘clean’ three-element high-lift airfoil. The incidence angle of these airfoils was set to zero degrees.
Technical Paper

Parametric Investigation of Ice Shedding from a Business Jet Aircraft

2007-09-24
2007-01-3359
Ice particles shed from aircraft surfaces are a safety concern because they can damage aft-mounted engines and other aircraft components. Ice shedding is a random and complex phenomenon. The randomness of the ice fragment geometry, size, orientation and shed location in addition to potential particle breakup during flight poses considerable simulation challenges. Current ice shedding analysis tools have limited capabilities due to the lack of experimental aerodynamic coefficients for the forces and moments acting on the ice fragment. A methodology for simulating the shedding of large ice particles from aircraft surfaces was developed at Wichita State University. This methodology combines experimental aerodynamic characteristics of ice fragments, computational fluid dynamics, trajectory analysis and the Monte Carlo method to provide probability maps of shed particle footprints at desired locations.
Technical Paper

Implementation of Automatic Airspace Avoidance in an Advanced Flight Control System

2007-09-17
2007-01-3817
An algorithm is developed and validated for automatic avoidance of restricted airspaces. This method is devised specifically for implementation with an advanced flight control system designed for general aviation application. The algorithm presented here implements two inputs to the aircraft; the bank angle, and the airspeed, while the control system always ensures coordinated maneuvers. Unlike collision avoidance systems, the current method is not designed to serve in an advisory role, but to assume complete control of the aircraft if necessary. It is demonstrated that in order to implement this technique, the aircraft must be assigned an immediate domain whose size would have to depend on the aircraft performance and flight conditions. The strategy is designed such that as the domain surrounding the aircraft approaches that of the restricted airspace, aircraft control would switch gradually away from the pilot and to the controller, which would initiate an evasive maneuver.
Technical Paper

Determination of the Operational Environment of the Propeller Blades on Beech 1900D Aircraft

2008-08-19
2008-01-2226
Data obtained from digital flight data recorders are used to assess the actual operational environment of propellers on a fleet of Beech 1900D aircraft in commuter role. Information is given on various aerodynamic parameters as well as those pertaining to engine and propeller usage. The takeoff rotation has been identified as the most demanding phase of flight in terms of unsteady loads exerted on the propeller blades. Special attention is paid to ground operations.
Technical Paper

ProRAPP: A Computer Program for Propeller/Rotor Noise Prediction

1998-09-28
985523
The current emphasis on environment protection by reducing noise pollution has led to stricter noise standards for general aviation aircraft. As a result, there is a growing demand for a computational tool to predict the noise during the design process. A computer program, called ProRAPP, has been developed for the prediction of noise generated by propeller/rotor blades. The acoustic pressure is calculated using a form of Ffowcs Williams-Hawkings equation which is suitable for numerical implementation. For noise predictions, the observer can either move with the propeller/rotor hub or it can be fixed to the ground. Experimental data from both wind tunnel and flight tests are used to validate the numerical results.
Technical Paper

An Experimental Investigation of SLD Impingement on Airfoils and Simulated Ice Shapes

2003-06-16
2003-01-2129
This paper presents experimental methods for investigating large droplet impingement dynamics and for obtaining small and large water droplet impingement data. Droplet impingement visualization experiments conducted in the Goodrich Icing Wind Tunnel with a 21-in chord NACA 0012 airfoil demonstrated considerable droplet splashing during impingement. The tests were performed for speeds in the range 50 to 175 mph and with cloud median volumetric diameters in the range of 11 to 270 microns. Extensive large droplet impingement tests were conducted at the NASA Glenn Icing Research Tunnel (IRT). Impingement data were obtained for a range of airfoil sections including three 36-inch chord airfoils (MS(1)-0317, GLC-305, and NACA 652-415), a 57-inch chord Twin Otter horizontal tail section and 22.5-minute and 45-minute LEWICE glaze ice shapes for the Twin Otter tail section. Small droplet impingement tests were also conducted for selected test models.
Technical Paper

High Speed Drilling of Al-2024-T3 Alloy

2002-04-16
2002-01-1516
The competitive market has forced the industry to develop methodologies to reduce lead-time of the products without sacrificing quality. One of the major metal removal operations in the aerospace industries is drilling. Over 100,000 holes are made for a small single engine aircraft. Naturally, demand for faster production rate results in the demand for high-speed drilling. But the cost of hole-making operations becomes a significant portion of the total manufacturing cost. This paper discusses the high speed drilling of Al-2024-T3 alloy, the effect of feed and speed on hole quality features like oversize, roundness error, burr height and surface roughness.
Technical Paper

Advanced Technology in Future Metal Cutting for Airframe Manufacturing

2002-04-16
2002-01-1515
Metal cutting is a substantial constituent of airframe manufacturing. During the past several decades, it has evolved significantly. However, most of the changes and improvement were initiated by the machine tool industry and cutting tool industry, thus these new technologies is generally applicable to all industries. Among them, few are developed especially for the airframe manufacture. Therefore, the potential of high efficiency could not be fully explored. In order to deal with severe competition, the aerospace industry needs improvement with a focus on achieving low cost through high efficiency. The direction of research and development in parts machining must comply with lean manufacturing principles and must enhance competitiveness. This article is being forwarded to discuss the trend of new developments in the metal cutting of airframe parts. Primary driving forces of this movement, such as managers, scientists, and engineers, have provided significant influence to this trend.
Technical Paper

Tail Icing Effects on the Aerodynamic Performance of a Business Jet Aircraft

2002-11-05
2002-01-3007
Experimental studies were conducted to investigate the effect of tailplane icing on the aerodynamic characteristics of 15%-scale business jet aircraft. The simulated ice shapes selected for the experimental investigation included 9-min and 22.5-min smooth and rough LEWICE ice shapes and spoiler ice shapes. The height of the spoilers was sized to match the horns of the LEWICE shapes on the suction side of the horizontal tail. Tests were also conducted to investigate aerodynamic performance degradation due to ice roughness which was simulated with sandpaper. Six component force and moment measurements, elevator hinge moments, surface pressures, and boundary layer velocity profiles were obtained for a range of test conditions. Test conditions included AOA sweeps for Reynolds number in the range of 0.7 based on tail mean aerodynamic chord and elevator deflections in the range of -15 to +15 degrees.
Technical Paper

Refill Friction Stir Spot Joining Rivet Replacement Technology

2016-09-27
2016-01-2130
The Refill Friction Spot Joining (RFSJ) is an emerging solid-state spot welding technology that thermo-mechanically creates a molecular-level bond between the work-pieces. RFSJ does not consume any filler or foreign materials so that no additional weight is introduced to the assembly. As the solid-to-liquid phase transition is not involved in RFSJ in general, there is no lack of fusion or material deterioration caused by liquefaction and solidification. Unlike the conventional friction stir spot welding, RFSJ produces a spot joint with a perfectly flush surface finish without a key or exit hole. Currently, the aerospace industry employs solid rivets for fastening the primary structures as they meet the baseline requirements and have well-established standards and specifications.
Technical Paper

Common Firewall Approach to Aviation Architecture

2011-10-18
2011-01-2718
While most industries have already adopted the use of IP networks to exploit the many advantages of network connectivity, the aircraft industry still has not significantly deployed networked devices in the aircraft. Security and reliability are two main concerns that have slowed the transition to this technology. The ability for Air Traffic Control to send digital communications to aircraft could significantly improve the aircraft safety by improving the speed and efficiency of communications. In addition, if devices could offload flight data to servers on the ground for analysis, the accuracy and efficiency of maintenance and other decisions impacting the aircraft could significantly improve. The purpose of this research is to propose an IP-based LAN architecture for the aircraft which provides a scalable solution without jeopardizing flight safety.
Technical Paper

As9100 Registration Difficulties and Organizational Benefits: A Supplier Satisfaction Survey

2006-08-30
2006-01-2438
A supplier satisfaction survey was developed and administered to 129 Aircraft suppliers who are AS9100 registered. The primary objective of the survey was to assess organizational benefits, attributed to the AS9100 standard, and registration process difficulties. Survey results from 49 responses indicated that the primary reason for seeking AS9100 registration was customer requirement, followed by improving production and service. Further analysis indicated that the top three difficulties were evaluating effectiveness of employee training, obtaining and analyzing data on customer feedback and satisfaction, and monitoring and measuring processes. The top three reported benefits, improved quality awareness among employees, an increase in employee training, and improved internal communication, respectively, were all non-financial in nature.
Technical Paper

Wiring Assessment of Aging Commuter Class Aircraft

2006-08-30
2006-01-2410
The reliability and maintenance of electrical wiring and electrical components in aging aircraft have become areas of concern for the aviation industry. Numerous investigations have been conducted on the aging aspects of wiring and systems of large transport and military airplanes, with funding primarily from the FAA (Federal Aviation Administration), Air Force, and NASA. However, because of the large number of smaller general aviation aircraft in service, a need for examining the condition of wiring, electrical components and maintenance procedures for smaller aircraft exists. The Aging Aircraft Research Laboratory at the National Institute for Aviation Research (NIAR), Wichita State University, has conducted a comprehensive teardown evaluation of three high time commuter class airplanes. This teardown included assessment of aircraft wiring, electrical systems and circuit breakers through general and intrusive visual inspections and laboratory tests.
Technical Paper

Response of an Advanced Flight Control System to Microburst Encounters

2005-10-03
2005-01-3420
An envelope protection scheme is proposed for responding to a microburst. This approach is based on limiting the allowable maximum inertial deceleration of the aircraft when flying at low airspeeds. This technique is shown in simulations to be very effective at preventing stall and resulting in minimal loss of altitude. It is speculated that the same scheme can also protect an aircraft in the event of other forms of windshear encounters, such as making a sudden turn to downwind.
Technical Paper

Studies of Hingeline Gap, Trailing Edge Treatment, Lower Surface Deflector on Spoiler Characteristics and Flow

1981-02-01
810564
Wind tunnel test have been conducted to determine effects of certain design variables on spoiler performance and spoiler flow field characteristics. Measurements include forces, oil flow surveys on a vertical splitter plate, and wake velocity and turbulence measurements using a dual split-film anemometer system. Results include the effects of spoiler design variables, such as: hingeline gap, lower surface venting and deflector, spoiler trailing edge notching and spoiler porosity. Hingeline gap, porosity, lower surface venting and lower surface deflector can be designed to reduce control dead-band tendency. Wake turbulence studies show that certain modifications can be utilized to diminish peak frequencies in the wake.
Technical Paper

A Fowler Flap System for a High-Performance General Aviation Airfoil

1974-02-01
740365
As part of a general aviation airfoil development program being carried out under the direction of the NASA Langley Research Center, a 30% chord Fowler flap has been developed for the GA(W)-1 airfoil.. Wind tunnel tests at Wichita State University have demonstrated a c1max value of 3.80 for 40 deg flap deflection at a Reynolds number of 2.2 × 106. Effects of flap slot geometry have been systematically tested and optimum flap settings for any flight c1 have been obtained. Modification of the reflexed lower surface contour resulted in a reduced c1max with flap nested. Vortex generators provided an increase in c1max of 0.2 for flap nested and 40 deg flap along with a drag penalty at low c1 values. Flow visualization studies show that the stalling patterns for the new airfoil are characterized by an absence of leading edge separation for both the flap-nested and the 40 deg flap cases.
Technical Paper

Studies of Light-Twin Wing-Body Interference

1983-02-01
830709
The results of an analytical study of aerodynamic interference effects for a light twin aircraft are presented. The data presented concentrates on the influence of a wing on a body (the fuselage). Wind tunnel comparisons of three fillets are included, with corresponding computational analysis. Results indicate that potential flow analysis is useful to guide the design of intersection fairings, but experimental tuning is still required. While the study specifically addresses a light twin aircraft, the methods are applicable to a wide variety of aircraft.
Technical Paper

Studies of Flow Separation and Stalling on One- and Two-Element Airfoils at Low Speeds

1977-02-01
770442
Research has been conducted on the nature of airfoil behavior at pre- and post-separated angles of attack. Detailed wind tunnel studies have been made of boundary layer and wake fields for the GA(W)-1 airfoil, and the airfoil with a 0.3 chord Fowler flap. Experimental data are compared with theoretical predictions from a multi-element viscous flow computer program. Theoretical predictions are reasonably accurate for unseparated flows, but have serious errors when separation is present. Some recent techniques for modeling post-separated flow behavior are discussed in light of the present experiments.
X