Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Measurement and Modeling of Rollover Airborne Trajectories

2009-04-20
2009-01-0109
Much has been written about reconstruction techniques and testing methods concerning vehicle rollovers. To date, most of the literature describes rollovers as one-dimensional events. Rollovers account for a disproportionate fraction of serious injuries and fatalities among all motor vehicle accidents. The three-dimensional nature of rollover sequences in which a rolling vehicle experiences multiple ground contacts contributes to the environment where such injuries occur. An analytical technique is developed to model the airborne segments of a rollover sequence as a parabolic path of the vehicle center of gravity. A formulation for the center of gravity descent from maximum elevation to full ground contact is developed. This formulation contains variables that may be readily determined from a thorough reconstruction. Ultimately, this formulation will also provide a vertical ground impact velocity at contact.
Technical Paper

An Inexpensive Automobile Crash Recorder

1974-02-01
740567
One of the greatest challenges faced in the design of realistic occupant protection systems is an accurate statistical model of what is really needed. The paucity of data is this realm hinders designers of standards alike. Ideally, a model of crash statistics would correlate, for significant accident modes, injury level (as measured by AMA Abreviated Injury Scale “AIS”) with some adequate measure of crash intensity. Having this information, not only could the required level of safety design be ascertained, but also the justifiable economic expenditure could be estimated. This paper treats the statistical basis for deployment of a data retrival system. It provides a basis for estimates of the amount of data required, the number of vehicles to be instrumented, the crash severity trigger levels, and the economics of recorder installation, for various levels of injury and fatality.
Technical Paper

Optimum Restraint Parameters for Bounded Occupant Motion in Decelerating Vehicles

1970-02-01
700450
The problem of occupant impact severity reduction by effective use of available space was studied using a two-degree-of-freedom linear mathematical model implemented on a digital computer. An optimum-search method was employed to find the best values of stiffness and damping terms for linear lap and shoulder “belts” corresponding to specific vehicle pulseforms and geometry at speeds 10 to 60 mph. System performance was evaluated on the basis of a severity index comparing occupant deceleration data, and upon penalties imposed for occupant contact with vehicle interior structures. Comparison to biomechanical data indicates that the optimal linear system for 60 mph could produce serious injuries. Comparison to theoretical optimum values indicates considerable room for improvement, using active or nonlinear passive systems.
Technical Paper

The VTS Single-Vehicle Trajectory Simulation

1985-02-25
850252
A vehicle trajectory simulation called VTS has been developed as an aid for reconstruction of automobile accidents. The two dimensional vehicle has longitudinal, lateral and yaw degrees of freedom, a point mass at the center of gravity) yaw inertia about the center of gravity and four contact points (“tires”) which can be arbitrarily positioned. No collision or aerodynamic forces are modeled. The traction surface is represented as a flat plane with a specified nominal friction coefficient. Several quadrilateral “patches” may be applied to the surface to change the friction coefficient in specific regions. User vehicle control consists of timewise tables for steering angle and traction coefficient for each of the four wheels. When used individually or in conjunction with other computer modules, VTS provides a convenient, accurate modular tool for trajectory simulation.
Technical Paper

A Load Sensing Face Form for Automotive Collision Crash Dummy Instrumentation

1986-02-24
860197
This paper summarizes the development of an Instrumented faceform which can record time histories of impact-related pressures at fifty-two locations over the entire face of a Hybrid 2 crash dummy skull. Pressures are measured by using piezo-electric, thin-plastic films; a high-speed, multiplex data acquisition system; signal conditioning; a software-controlled computerized data reduction and recording scheme; and a submergence calibration technique. The construction of the modified dummy face and the calibration gear are discussed. Examples of preliminary laboratory impact test results are presented. Theory and techniques relating to signal processing software, microprocessor controlled random-access-memory data-retrieval system and system calibration are also discussed. It is hoped that this tool, now undergoing final development and verification testing, will find extensive use in the evaluation and safety-related design of vehicle interiors and occupant restraints.
Technical Paper

Occupant Protection in Rear-end Collisions: I. Safety Priorities and Seat Belt Effectiveness

1991-10-01
912913
Recent detailed field accident data are examined with regard to injuries associated with rear impacts. The distribution of “Societal Harm” associated with various injury mechanisms is presented, and used to evaluate the performance of current seat back and restraint system designs. Deformation associated with seat back yield is shown to be beneficial in reducing overall Societal Harm in rear impacts. The Societal Harm associated with ejection and contact with the vehicle rear interior (the two injury mechanisms addressed by a rigid seat approach), is shown to be minimal. The field accident data also confirm that restraint usage in rear impacts has a substantial injury-reducing effect. Laboratory tests and computer simulations were run to investigate the mechanism by which seat belts protect occupants in rear impacts.
Technical Paper

Crush Energy in Accident Reconstruction

1986-02-24
860371
Vehicle accident reconstruction methods based on deformation energy are argued to be an increasingly valuable tool to the accident reconstructionist, provided reliable data, reasonable analysis techniques, and sound engineering judgement accompany their use. The evolution of the CRASH model of vehicle structural response and its corresponding stiffness coefficients are reviewed. It is concluded that the deformation energy for an accident vehicle can be estimated using the CRASH model provided that test data specific to the accident vehicle is utilized. Published stiffness coefficients for vehicle size categories are generally not appropriate. For the purpose of estimating vehicle deformation energy, a straight-forward methodology is presented which consists of applying the results of staged crash tests. The process of translating crush profiles to estimates of vehicle deformation energies and velocities is also discussed.
X