Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Control Strategy for the Excitation of a Complete Vehicle Test Rig with Terrain Constraints

2013-04-08
2013-01-0671
A unique concept for a multi-body test rig enabling the simulation of longitudinal, steering and vertical dynamics was developed at the Institute for Mechatronic Systems (IMS) at TU Darmstadt. A prototype of this IMS test rig is currently being built. In conjunction with the IMS test rig, the Vehicle Terrain Performance Laboratory (VTPL) at Virginia Tech further developed a full car, seven degree of freedom (7 DOF) simulation model capable of accurately reproducing measured displacement, pitch, and roll of the vehicle body due to terrain excitation. The results of the 7 DOF car model were used as the reference input to the multi-body IMS test rig model. The goal of the IMS/VTPL joint effort was to determine whether or not a controller for the IMS test rig vertical actuator could accurately reproduce wheel displacements due to different measured terrain constraints.
Technical Paper

Identifying Vehicle Model Parameters Using Measured Terrain Excitations

2009-04-20
2009-01-1197
Currently, the final stages of chassis development are conducted on prototype vehicles, requiring vehicle manufacturers to dedicate copious resources to the development of each new vehicle platform. The objective of this work is to provide development engineers a system identification tool enabling them to use modeling and simulation to better estimate the required vehicle system parameters. This work develops a parameter identification method for existing vehicle models in which measured terrain data is used as the model excitation. The model was validated using a variety of excitation events and shown to provide accurate estimations of a vehicle’s roll, pitch, and vertical displacement.
Technical Paper

Automotive Seat Suspension Model for Ride Quality Studies

2002-03-04
2002-01-0778
A high fidelity seat suspension model, which can be used for ride quality predictions, is developed in this work. The coil-spring seat suspension model includes unique nonlinear forms for the stiffness and damping characteristics. This is the first paper to consider the nonlinear geometric effects of the suspension, derive the coil-spring suspension model from physical principles, and compare theoretical and experimental results. A simplified nonlinear form is achieved via an admissible function describing the vertical suspension deflection as a function of the lateral position. This simplified nonlinear form is compared to experimental data and demonstrated to have exceptional fidelity.
Technical Paper

Plausibility Checking of Road Profile Measurements

2003-03-03
2003-01-0669
Load data representing severe customer usage is required during the chassis development process. The use of road profiles and vehicle models to predict chassis loads is currently being researched; this research hinges on the ability to accurately measure road profiles. This work focuses on detecting possible signal defects such as leaves on the ground, reflecting surfaces, or narrow roadway gaps. The objective of this work is to develop a simulation procedure that checks the measured road profile for plausibility. The position of the vehicle body is recorded as part of the typical road profiling process. Ideally, a mathematical model can predict the body position from a road profile. The first step in verifying the plausibility of road profiles is to predict the body position. Next, the measured body position is compared to the predicted body position for the road profile in question. New criteria for plausibility checking are a major contribution of this work.
Technical Paper

Developing a Methodology to Synthesize Terrain Profiles and Evaluate their Statistical Properties

2011-04-12
2011-01-0182
The accuracy of computer-based ground vehicle durability and ride quality simulations depends on accurate representation of road surface topology as vehicle excitation data since most of the excitation exerted on a vehicle as it traverses terrain is provided by the terrain topology. It is currently not efficient to obtain accurate terrain profile data of sufficient length to simulate the vehicle being driven over long distances. Hence, durability and ride quality evaluations of a vehicle depend mostly on data collected from physical tests. Such tests are both time consuming and expensive, and can only be performed near the end of a vehicle's design cycle. This paper covers the development of a methodology to synthesize terrain profile data based on the statistical analysis of physically measured terrain profile data.
Journal Article

Admissible Shape Parameters for a Planar Quasi-Static Constraint Mode Tire Model

2017-08-17
2017-01-9683
Computationally efficient tire models are needed to meet the timing and accuracy demands of the iterative vehicle design process. Axisymmetric, circumferentially isotropic, planar, discretized models defined by their quasi-static constraint modes have been proposed that are parameterized by a single stiffness parameter and two shape parameters. These models predict the deformed shape independently from the overall tire stiffness and the forces acting on the tire, but the parameterization of these models is not well defined. This work develops an admissible domain of the shape parameters based on the deformation limitations of a physical tire, such that the tire stiffness properties cannot be negative, the deformed shape of the tire under quasi-static loading cannot be dominated by a single harmonic, and the low spatial frequency components must contribute more than higher frequency components to the overall tire shape.
Journal Article

The Development of Terrain Pre-filtering Technique Based on Constraint Mode Tire Model

2015-09-01
2015-01-9113
The vertical force generated from terrain-tire interaction has long been of interest for vehicle dynamic simulations and chassis development. To improve simulation efficiency while still providing reliable load prediction, a terrain pre-filtering technique using a constraint mode tire model is developed. The wheel is assumed to convey one quarter of the vehicle load constantly. At each location along the tire's path, the wheel center height is adjusted until the spindle load reaches the pre-designated load. The resultant vertical trajectory of the wheel center can be used as an equivalent terrain profile input to a simplified tire model. During iterative simulations, the filtered terrain profile, coupled with a simple point follower tire model is used to predict the spindle force. The same vehicle dynamic simulation system coupled with constraint mode tire model is built to generate reference forces.
X