Refine Your Search

Topic

Search Results

Journal Article

Effect of Spoke Design and Material Nonlinearity on Non-Pneumatic Tire Stiffness and Durability Performance

2021-08-06
Abstract The non-pneumatic tire (NPT) has been widely used due to its advantages of no run-flat, no need for air maintenance, low rolling resistance, and improvement of passenger comfort due to its better shock absorption. It has a variety of applications in military vehicles, earthmovers, the lunar rover, stair-climbing vehicles, etc. Recently, the Unique Puncture-Proof Tire System (UPTIS) NPT has been introduced for passenger vehicles. In this study, three different design configurations, viz., Tweel, Honeycomb, and newly developed UPTIS, have been compared. The effect of polyurethane (PU) material nonlinearity has also been introduced by applying five different nonlinear PU material properties in the spokes. The combined analysis of the PU material nonlinearity and spoke design configuration on the overall tire stiffness and spoke damage prediction is done using three-dimensional (3D) finite element modelling (FEM) simulations performed in ANSYS 16.0.
Journal Article

Laser-Assisted Filler-Based Joining for Battery Assembly in Aviation

2020-10-19
Abstract A key problem of the construction of fully electric aircraft is the limited energy density of battery packs. It is generally accepted that this can only be overcome via new, denser battery chemistry together with a further increase in the efficiency of power utilization. One appealing approach for achieving the latter is using laser-assisted filler-based joining technologies, which offers unprecedented flexibility for achieving battery cell connections with the least possible electrical loss. This contribution presents our results on the effect of various experimental and process parameters on the electrical and mechanical properties of the laser-formed bond.
Journal Article

Data Manipulation Approach and Parameters Interrelationships of the High-Pressure Torsion for AA6061-15%SiCp Composite

2018-05-29
Abstract On contrast to the qualitative approach used in the majority of researches, an evaluation quantitative approach is introduced not only to depict the plain individual effect of the influence of the high-pressure torsion (HPT) processing conditions on the microstructural and Hv-values of the ultra-hard nanostructured AA6061-15%SiCp composite but also to detect its possible parameters functional interaction and nonlinear trends involved. Experimental data were used to establish many adequate and significant empirical models to detect and to evaluate the mutual functional interrelationships between the Hv-values of the composite, each of HPT processing pressure, and number of revolutions. For each group of interrelated parameters, the preferred selected developed model has been exploited to generate the relevant contours and response surface graphs.
Journal Article

Classification of Contact Forces in Human-Robot Collaborative Manufacturing Environments

2018-04-02
Abstract This paper presents a machine learning application of the force/torque sensor in a human-robot collaborative manufacturing scenario. The purpose is to simplify the programming for physical interactions between the human operators and industrial robots in a hybrid manufacturing cell which combines several robotic applications, such as parts manipulation, assembly, sealing and painting, etc. A multiclass classifier using Light Gradient Boosting Machine (LightGBM) is first introduced in a robotic application for discriminating five different contact states w.r.t. the force/torque data. A systematic approach to train machine-learning based classifiers is presented, thus opens a door for enabling LightGBM with robotic data process. The total task time is reduced largely because force transitions can be detected on-the-fly. Experiments on an ABB force sensor and an industrial robot demonstrate the feasibility of the proposed method.
Journal Article

Automotive Components Fatigue and Durability Testing with Flexible Vibration Testing Table

2018-04-07
Abstract Accelerated durability testing of automotive components has become a major interest for the ground vehicle Industries. This approach can predict the life characteristics of the vehicle by testing fatigue failure at higher stress level within a shorter period of time. Current tradition of laboratory testing includes a rigid fixture to mount the component with the shaker table. This approach is not accurate for the durability testing of most vehicle components especially for those parts connected directly with the tire and suspension system. In this work, the effects of the elastic support on modal parameters of the tested structure, such as natural frequencies, damping ratios and mode shapes, as well as the estimated structural fatigue life in the durability testing were studied through experimental testing and numerical simulations.
Journal Article

TOC

2021-06-07
Abstract TOC
Journal Article

Joint Mechanism and Prediction of Strength for a Radial Knurling Connection of Assembled Camshaft Using a Subsequent Modeling Approach

2018-06-25
Abstract Knurling joint applied in assembled camshaft has developed rapidly in recent years, which have exhibited great advantages against conventional joint methods in the aspects of automation, joint precision, thermal damage, noise, and near net shape forming. Both quality of assembly process and joint strength are the key requirements for manufacturing a reliable assembled camshaft. In this article, a finite element predictive approach including three subsequent models (knurling, press-fit and torsion strength) has been established. Johnson-Cook material model has been used to simulate the severe plastic deformation of the material. The residual stress field calculated from the knurling process was transferred as initial condition to the press-fit model to predict the press-fit load. The predicted press-fit load, torque strength and displacement of cam profile before failure were calculated.
Journal Article

The Effect of Change in Assembly Sequence on Permanent Strain of Cab Suspension Console

2020-08-20
Abstract Heavy commercial vehicles play an important role in creating the trade and economic balance of countries. Also, the durability and safety of heavy commercial vehicles come to the fore. Heavy commercial vehicles consist of two parts. These are the chassis area with the equipment that allows the vehicle to move and the cabin section where the driver is located. The cabin area is the most important area that ensures the highest level of driver safety. Considering that the production of trucks is increasing day by day, it is inevitable for companies to increase their R&D activities in the field of cabin and cabin suspension systems for much safer, durable, and comfortable trucks. This study aims to determine the safe torque value of the fasteners and their assembly sequence of the Cab Suspension Console, which is one of the most important connection parts in a truck and which can cause a fatal accident by breaking.
Journal Article

Mixture Distributions in Autonomous Decision-Making for Industry 4.0

2019-05-29
Abstract Industry 4.0 is expected to revolutionize product development and, in particular, manufacturing systems. Cyber-physical production systems and digital twins of the product and process already provide the means to predict possible future states of the final product given the current production parameters. With the advent of further data integration coupled with the need for autonomous decision-making, methods are needed to make decisions in real time and in an environment of uncertainty in both the possible outcomes and in the stakeholders’ preferences over them. This article proposes a method of autonomous decision-making in data-intensive environments, such as a cyber-physical assembly system. Theoretical results in group decision-making and utility maximization using mixture distributions are presented. This allows us to perform calculations on expected utility accurately and efficiently through closed-form expressions, which are also provided.
Journal Article

Nondestructive Measurement of Residual Strain in Connecting Rods Using Neutrons

2019-10-15
Abstract Increasing the strength of materials is effective in reducing weight and boosting structural part performance, but there are cases where the residual strain generated during the process of manufacturing of high-strength materials results in a decline of durability. It is therefore important to understand how the residual strain in a manufactured component changes due to processing conditions. In the case of a connecting rod, because the strain load on the connecting rod rib sections is high, it is necessary to clearly understand the distribution of strain in the ribs. However, because residual strain is generally measured by using X-ray diffractometers or strain gauges, measurements are limited to the surface layer of the parts. Neutron beams, however, have a higher penetration depth than X-rays, allowing for strain measurement in the bulk material.
Journal Article

Development of a Database for Model Parameterization, Tire Performance Evaluation, and Analysis of In-Plane Spindle Forces

2021-04-07
Abstract Tires are one of the most important vehicle components since they significantly affect vehicle attributes such as handling stability, steering controllability, ride comfort, and structure durability. However, whether for tire competitive benchmarking or vehicle conceptual design, data insufficiency tends to restrict the development process. This article presents a procedure of establishing a database for the evaluation of tire and vehicle impact vibration. Forty-three tires with various sizes and usages were selected to build the datasets. The rigid ring model was used to characterize each individual tire sample on account of our application requests. In view of the test resources, an optimization approach to the standard parameterization method was proposed and fully validated with the measurement database. The parameter characteristics were then statistically investigated and compared between the different tire types.
Journal Article

Enabling Autonomous Decision-Making in Manufacturing Systems through Preference Fusion

2020-01-09
Abstract Decision analysis (DA), a well-established discipline in business and engineering, is entering another domain of application due to the advent of Industry 4.0. DA enables optimal decisions by finding system parameters that maximize the utility, or in the presence of uncertainty the expected utility, from the attributes of a system. Whether there is a single decision maker or all decision makers have uniform preferences, determining risk behavior and the resulting utility is well developed in the existing literature. However, variability in preferences has not been satisfactorily addressed. This gap gains added significance in the face of the demands of Industry 4.0 where cyberphysical production systems must drive autonomous decision-making on the factory floor. The decisions must accommodate a distribution of customer and designer preferences, including production auditors within the organization.
Journal Article

Similarity between Damaging Events Using Pseudo Damage Density

2020-11-10
Abstract Load-time histories can be used to predict vehicle durability by calculating the pseudo damage (PD) through one or more load paths for a vehicle. When the dynamics of each load path are taken into account, a PD density (damage per distance traveled) can be expressed for each load path for any given road input to a vehicle. When damage is expressed as a PD density for a segment of road, separable damaging events can be identified using the PD density in all load paths of interest for a vehicle. However, it would be beneficial if events with similar damage characteristics can be identified and grouped together to provide an additional level of durability information. The objective of this work is to develop a similarity test for identifying the similarity/dissimilarity between multiple damaging events using the damage characteristics in multiple load paths. The damage characteristics for events are defined using the distribution of PD density samples for all known load paths.
Journal Article

Precision Robotic Milling of Fiberglass Shims in Aircraft Wing Assembly Using Laser Tracker Feedback

2022-01-11
Abstract During aircraft wing assembly, machined fiberglass shims are often used between mating parts to compensate for inherent geometric variability due to manufacturing. At present, fiberglass shims for large aerospace structures, such as shims attached to wing ribs, are manufactured either manually or by precision machining, both of which pose a challenge due to tight tolerance requirements and wide geometric variations in the aircraft structures. Relative to articulated arm industrial robots, gantry-style computer numerical control (CNC) machines are costly, consume large footprints, and are inflexible in the application. Therefore, industrial robots are viewed as potential candidates to replace these gantry systems to facilitate metrology, shim machining, and permanent joining of aircraft structure, with all these processes taking place in the assembly process step.
Journal Article

Influence of Fifth Wheel Position on Cab Durability and Dynamics in Tractor-Semitrailer Vehicle

2021-10-11
Abstract Articulated vehicles contribute to the major portions of cargo transport through roads. Fifth wheel (FW) is an important component in these vehicles, which acts as the bridge between tractor and trailer and is often used as a parameter to adjust the axle loads. Ride and comfort studies linked to FW position exist. However, its influence on durability is often not considered seriously. In this article, three different FW positions placed at 200 mm, 400 mm, and 600 mm in front of the rear axle are studied virtually on a 4×2 tractor with three-axle semitrailer combination. To assess the risk associated with FW movement, acceleration-based pseudo-relative damage, power spectral density (PSD), and level crossing plots are analyzed for each FW position. Further, fatigue analysis is done on the cab structural components to understand the durability. Outcome shows that the FW position has an influence in determining the cab dynamics and durability of the components to a great extent.
Journal Article

A Novel Durability Analysis Approach for High-Pressure Die Cast Aluminum Engine Block

2021-03-03
Abstract Lightweight and high-strength high-pressure die casting (HPDC) aluminum has been widely used in automotive components such as the cylinder block, lower crankcase extension, transmission case, and drive unit. Die cast parts have good surface finishes with relatively higher material strength in the casting skin than the center core material, maintain consistent features and tolerance, and maximize metal yield, therefore making it the most cost-effective casting process for mass production of aluminum parts. However, due to the rapid filling rates, the HPDC process tends to form large porosity and oxides because of the entrapped gas and solidification shrinkage, thereby deteriorating the mechanical properties of the casting parts.
Journal Article

Indoor Measurements of Tire and Road Data—Applications to Durability Loads Prediction

2021-03-29
Abstract Road test is hitherto the most common approach to assess vehicle durability and structural performance. Moreover, the measurements serve as the final validation of the road load simulation, which is currently widely used in vehicle development cycles. The virtual simulation requires digitized road surfaces, a suitable tire model, and suspension model. The whole procedure is time consuming for outdoor measurements and costly to automotive OEMs for road modeling, tire model parametrization, and the like. However, the respective error from each subsystem model keep uncertain during the whole vehicle simulation. Meanwhile, quantitative evaluation of the simulation quality is always tough to conduct due to variability of measurements and limited test configurations. To overcome such challenges, a new approach with higher operational feasibility for the acquisition of durability loads at wheel rim was proposed.
Journal Article

A Model Study for Prediction of Performance of Automotive Interior Coatings: Effect of Cross-Link Density and Film Thickness on Resistance to Solvents and Chemicals

2019-03-27
Abstract Automotive interior coatings for flexible and rigid substrates represent an important segment within automotive coating space. These coatings are used to protect plastic substrates from mechanical and chemical damage, in addition to providing colour and design aesthetics. These coatings are expected to resist aggressive chemicals, fluids, and stains while maintaining their long-term physical appearance and mechanical integrity. Designing such coatings, therefore, poses significant challenges to the formulators in effectively balancing these properties. Among many factors affecting coating properties, the cross-link density (XLD) and solubility parameter (δ) of coatings are the most predominant factors.
Journal Article

Optimizing the Parameters of the Partial Textures of the Crankpin Bearing to Enhance the Lubrication Performance of an Engine

2021-12-29
Abstract To enhance the lubrication performance of the crankpin bearing (CB) at the elastic hydrodynamic lubrication regime (EHLR), the spherical dimples (SD) of the partial textures (PT) is designed on the EHLR of the CB. Based on a hydrodynamic model of the slider-crank mechanism (SCM) combined with the CB lubrication and a multi-objective optimization program of the genetic algorithm (MOGA), the initial design parameters of PT including the depth hsij and the diameter Dij of each SD defined as chromosomes in the MOGA are then optimized to further enhance the CB’s lubrication performance. Three indexes of the oil film pressure p, friction force F f, and friction coefficient μ of the CB are chosen as the objective functions. The research results indicate that based on the optimal approach of the MOGA with its good stability and repeatability, the CB’s lubrication performance is remarkably improved by the optimal parameters in comparison with the initial parameters of the SD.
Journal Article

3D-Printed Antenna Design Using Graphene Filament and Copper Tape for High-Tech Air Components

2022-11-25
Abstract Additive manufacturing (AM) technologies can produce lighter parts; reduce manual assembly processes; reduce the number of production steps; shorten the production cycle; significantly reduce material consumption; enable the production of prostheses, implants, and artificial organs; and produce end-user products since it is used in many sectors for many reasons; it has also started to be used widely, especially in the field of aerospace. In this study, polylactic acid (PLA) was preferred for the antenna substrate because it is environmentally friendly, easy to recycle, provides convenience in production design with a three-dimensional (3D) printer, and is less expensive compared to other available materials. Copper (Cu) tape and graphene filament were employed for the antenna patch component due to their benefits.
X