Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

Hardware-in-the-Loop, Traffic-in-the-Loop and Software-in-the-Loop Autonomous Vehicle Simulation for Mobility Studies

2020-04-14
2020-01-0704
This paper focuses on finding and analyzing the relevant parameters affecting traffic flow when autonomous vehicles are introduced for ride hailing applications and autonomous shuttles are introduced for circulator applications in geo-fenced urban areas. For this purpose, different scenarios have been created in traffic simulation software that model the different levels of autonomy, traffic density, routes, and other traffic elements. Similarly, software that specializes in vehicle dynamics, physical limitations, and vehicle control has been used to closely simulate realistic autonomous vehicle behavior under such scenarios. Different simulation tools for realistic autonomous vehicle simulation and traffic simulation have been merged together in this paper, creating a realistic simulator with Hardware-in-the-Loop (HiL), Traffic-in-the-Loop (TiL), and Software in-the-Loop (SiL) simulation capabilities.
Technical Paper

Stability Enhancement of a Light Commercial Vehicle Using Active Steering

2006-04-03
2006-01-1181
This paper is on the application of electric power assisted steering and yaw stability control to a light commercial vehicle. An active steering system is developed and used for both purposes. Steering system and vehicle dynamics models are derived and built in Simulink and their response is compared to that of a validated Adams/Chassis model of the vehicle. A boost curve type electric power assisted steering controller and a yaw stability control system based on the model regulator steering controller are developed. Their performance is demonstrated through simulation results. A steering test rig built for safely developing steering controllers in a hardware-in-the-loop setting is introduced. Details of the experimental vehicle with active steering, built to test the concepts developed in the paper is also presented.
Technical Paper

Camera Based Automated Lane Keeping Application Complemented by GPS Localization Based Path Following

2018-04-03
2018-01-0608
Advances in sensor solutions in the automotive sector make it possible to develop better ADAS and autonomous driving functions. One of the main tasks of highway chauffeur and highway pilot automated driving systems is to keep the vehicle between the lane lines while driving on a pre-defined route. This task can be achieved by using camera and/or GPS to localize the vehicle between the lane lines. However, both sensors have shortcomings in certain scenarios. While the camera does not work when there are no lane lines to be detected, an RTK GPS can localize the vehicle accurately. On the other hand, GPS requires at least 3 satellite connections to be able to localize the vehicle and more satellite connections and real-time over-the-air corrections for lane-level positioning accuracy. If GPS localization fails or is not accurate enough, lane line information from the camera can be used as a backup.
Technical Paper

Use of Robust DOB/CDOB Compensation to Improve Autonomous Vehicle Path Following Performance in the Presence of Model Uncertainty, CAN Bus Delays and External Disturbances

2018-04-03
2018-01-1086
Autonomous vehicle technology has been developing rapidly in recent years. Vehicle parametric uncertainty in the vehicle model, variable time delays in the CAN bus based sensor and actuator command interfaces, changes in vehicle sped, sensitivity to external disturbances like side wind and changes in road friction coefficient are factors that affect autonomous driving systems like they have affected ADAS and active safety systems in the past. This paper presents a robust control architecture for automated driving systems for handling the abovementioned problems. A path tracking control system is chosen as the proof-of-concept demonstration application in this paper. A disturbance observer (DOB) is embedded within the steering to path error automated driving loop to handle uncertain parameters such as vehicle mass, vehicle velocities and road friction coefficient and to reject yaw moment disturbances.
Technical Paper

Localization and Perception for Control and Decision Making of a Low Speed Autonomous Shuttle in a Campus Pilot Deployment

2018-04-03
2018-01-1182
Future SAE Level 4 and Level 5 autonomous vehicles will require novel applications of localization, perception, control and artificial intelligence technology in order to offer innovative and disruptive solutions to current mobility problems. This paper concentrates on low speed autonomous shuttles that are transitioning from being tested in limited traffic, dedicated routes to being deployed as SAE Level 4 automated driving vehicles in urban environments like college campuses and outdoor shopping centers within smart cities. The Ohio State University has designated a small segment in an underserved area of campus as an initial autonomous vehicle (AV) pilot test route for the deployment of low speed autonomous shuttles. This paper presents initial results of ongoing work on developing solutions to the localization and perception challenges of this planned pilot deployment.
Technical Paper

Discrete-time Robust PD Controlled System with DOB/CDOB Compensation for High Speed Autonomous Vehicle Path Following

2019-04-02
2019-01-0674
In recent years, there has been increasing research on automated driving technology. Autonomous vehicle path following performance is one of significant consideration. This paper presents discrete time design of robust PD controlled system with disturbance observer (DOB) and communication disturbance observer (CDOB) compensation to enhance autonomous vehicle path following performance. Although always implemented on digital devices, DOB and CDOB structure are usually designed in continuous time in the literature and also in our previous work. However, it requires high sampling rate for continuous-time design block diagram to automatically convert to corresponding discrete-time controller using rapid controller prototyping systems. In this paper, direct discrete time design is carried out. Digital PD feedback controller is designed based on the nominal plant using the proposed parameter space approach.
Technical Paper

Use of Hardware in the Loop (HIL) Simulation for Developing Connected Autonomous Vehicle (CAV) Applications

2019-04-02
2019-01-1063
Many smart cities and car manufacturers have been investing in Vehicle to Infrastructure (V2I) applications by integrating the Dedicated Short-Range Communication (DSRC) technology to improve the fuel economy, safety, and ride comfort for the end users. For example, Columbus, OH, USA is placing DSRC Road Side Units (RSU) to the traffic lights which will publish traffic light Signal Phase and Timing (SPaT) information. With DSRC On Board Unit (OBU) equipped vehicles, people will start benefiting from this technology. In this paper, to accelerate the V2I application development for Connected and Autonomous Vehicles (CAV), a Hardware in the Loop (HIL) simulator with DSRC RSU and OBU is presented. The developed HIL simulator environment is employed to implement, develop and evaluate V2I connected vehicle applications in a fast, safe and cost-effective manner.
Technical Paper

Predicting Desired Temporal Waypoints from Camera and Route Planner Images using End-To-Mid Imitation Learning

2021-04-06
2021-01-0088
This study is focused on exploring the possibilities of using camera and route planner images for autonomous driving in an end-to-mid learning fashion. The overall idea is to clone the humans’ driving behavior, in particular, their use of vision for ‘driving’ and map for ‘navigating’. The notion is that we humans use our vision to ‘drive’ and sometimes, we also use a map such as Google/Apple maps to find direction in order to ‘navigate’. We replicated this notion by using end-to-mid imitation learning. In particular, we imitated human driving behavior by using camera and route planner images for predicting the desired waypoints and by using a dedicated control to follow those predicted waypoints. Besides, this work also places emphasis on using minimal and cheaper sensors such as camera and basic map for autonomous driving rather than expensive sensors such Lidar or HD Maps as we humans do not use such sophisticated sensors for driving.
Technical Paper

Development of Virtual Fuel Economy Trend Evaluation Process

2019-04-02
2019-01-0510
With the advancement of the autonomous vehicle development, the different possibilities of improving fuel economy have increased significantly by changing the driver or powertrain response under different traffic conditions. Development of new fuel-efficient driving strategies requires extensive experiments and simulations in traffic. In this paper, a fuel efficiency simulator environment with existing simulator software such as Simulink, Vissim, Sumo, and CarSim is developed in order to reduce the overall effort required for developing new fuel-efficient algorithms. The simulation environment is created by combining a mid-sized sedan MATLAB-Simulink powertrain model with a realistic microscopic traffic simulation program. To simulate the traffic realistically, real roads from urban and highway sections are modeled in the simulator with different traffic densities.
Technical Paper

Connected UAV and CAV Coordination for Improved Road Network Safety and Mobility

2021-04-06
2021-01-0173
Having connectivity among ground vehicles brings about benefits in fuel economy improvement, traffic mobility enhancement and undesired emission reductions. On the other hand, Unmanned Aerial Vehicles (UAV) have proven to help in getting aerial data to end users in an affordable manner. When UAVs are equipped with cameras, they can get information about the terrain they are flying over. Moreover, using Vehicle-to-Everything (V2X) communication technologies, it is possible to form a communication link between UAVs and the connected ground vehicle networks comprising of Connected and Autonomous vehicles (CAVs). To investigate and exploit the potential benefits and use cases of a broad vehicle network, a microscopic traffic simulator modified previously by our group with the addition of nearby UAVs is used to integrate simulated Connected UAVs flying above a realistic simulation of heterogeneous traffic flow containing both CAVs and non-CAVs.
Technical Paper

FMVSS 126 Sine with Dwell ESC Regulation Test for Autonomous Vehicles

2019-04-02
2019-01-1011
Electronic stability control (ESC) has been an essential part of road vehicle safety for almost three decades. In April of 2007, the United States federal government issued a regulation to test the validity of ESC in development vehicles, and the regulation is called Federal Motor Vehicle Safety Standards (FMVSS) 126 in North America (NA), and an equivalent test in other countries outside of NA called ECE13-H (Economic Commission for Europe). While these standards have been used to certify ESC in development passenger cars for over a decade, this has not yet been scrutinized for the application of autonomous vehicles. Autonomous cars have sensors and control systems which can be used to improve ESC, where commercial standard vehicles do not.
Technical Paper

Path Planning and Robust Path Tracking Control of an Automated Parallel Parking Maneuver

2024-04-09
2024-01-2558
Driver’s license examinations require the driver to perform either a parallel parking or a similar maneuver as part of the on-road evaluation of the driver’s skills. Self-driving vehicles that are allowed to operate on public roads without a driver should also be able to perform such tasks successfully. With this motivation, the S-shaped maneuverability test of the Ohio driver’s license examination is chosen here for automatic execution by a self-driving vehicle with drive-by-wire capability and longitudinal and lateral controls. The Ohio maneuverability test requires the driver to start within an area enclosed by four pylons and the driver is asked to go to the left of the fifth pylon directly in front of the vehicle in a smooth and continuous manner while ending in a parallel direction to the initial one. The driver is then asked to go backwards to the starting location of the vehicle without stopping the vehicle or hitting the pylons.
X