Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Safe and Secure Software Updates Over The Air for Electronic Brake Control Systems

2016-09-18
2016-01-1145
Vehicle manufacturers are suffering from increasing expenses for fixing software issues. This fact is mainly driving their desire to use mobile communication channels for doing Software Updates Over The Air (SOTA). Software updates today are typically done at vehicle service stations by connecting the vehicles’ electronic network via the On Board Diagnostic (OBD) interface to a service computer. These operations are done under the control of trained technicians. SOTA means that the update process must get handled by the driver. Two critical aspects need to get considered when doing SOTA at Electronic Brake Control (EBC) systems. Both will determine the acceptance of SOTA by legal authorities and by the passengers: The safety and security of the vehicle The availability of the vehicle for the passengers The security aspect includes the necessity to protect the vehicle and the manufacturers IP from unwanted attacks.
Journal Article

Review of Prior Studies of Fuel Effects on Vehicle Emissions

2009-04-20
2009-01-1181
A literature review was conducted to survey recent research on the effects of fuel properties on exhaust emissions from gasoline and diesel vehicles, on-road and off-road. Most of the literature has been published in SAE papers, although data have also been reported in other journals and government reports. A full report and database are available from the Coordinating Research Council (www.crcao.org). The review identified areas of agreement and disagreement in the literature and evaluated the adequacy of experimental design and analysis of results. Areas where additional research would be helpful in defining fuel effects are also identified. In many of the research programs carried out to evaluate the effect of new blendstocks, the fuel components were splash blended in fully formulated fuels. This approach makes it extremely difficult to determine the exact cause of the emissions benefit or debit.
Journal Article

Properties of Partial-Flow and Coarse Pore Deep Bed Filters Proposed to Reduce Particle Emission of Vehicle Engines

2009-04-20
2009-01-1087
Four of these Particulate Reduction Systems (PMS) were tested on a passenger car and one of them on a HDV. Expectation of the research team was that they would reach at least a PM-reduction of 30% under all realistic operating conditions. The standard German filter test procedure for PMS was performed but moreover, the response to various operating conditions was tested including worst case situations. Besides the legislated CO, NOx and PM exhaust-gas emissions, also the particle count and NO2 were measured. The best filtration efficiency with one PMS was indeed 63%. However, under critical but realistic conditions filtration of 3 of 4 PMS was measured substantially lower than the expected 30 %, depending on operating conditions and prior history, and could even completely fail. Scatter between repeated cycles was very large and results were not reproducible. Even worse, with all 4 PMS deposited soot, stored in these systems during light load operation was intermittently blown-off.
Journal Article

Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions

2009-04-20
2009-01-1102
Premixed Charge Compression Ignition (PCCI), a Low Temperature Combustion (LTC) strategy for diesel engines is of increasing interest due to its potential to simultaneously reduce soot and NOx emissions. However, the influence of mixture preparation on combustion phasing and heat release rate in LTC is not fully understood. In the present study, the influence of injection timing on mixture preparation, combustion and emissions in PCCI mode is investigated by experimental and computational methods. A sequential coupling approach of 3D CFD with a Stochastic Reactor Model (SRM) is used to simulate the PCCI engine. The SRM accounts for detailed chemical kinetics, convective heat transfer and turbulent micro-mixing. In this integrated approach, the temperature-equivalence ratio statistics obtained using KIVA 3V are mapped onto the stochastic particle ensemble used in the SRM.
Journal Article

Calibration and Validation of Various Commercial Particle Number Measurement Systems

2009-04-20
2009-01-1115
Measurement of particle number was introduced in the Euro 5/6 light duty vehicle emissions regulation. Although particle number measurement systems have to be calibrated by the manufacturers, labs have to validate the proper operation of their systems within one year of the emissions test. The systems must achieve a >99% reduction of an aerosol containing 30 nm tetracontane (CH3(CH2)38CH3) particles (C40) with an inlet concentration >104 #/cm3. They must also include an initial heated dilution stage with dilution of at least 10 which outputs a diluted sample at a temperature of 150°C–400°C. The system as a whole must achieve a particle number concentration reduction factor for particles of 30 nm and 50 nm electrical mobility diameters, that is no more than 30% and 20% respectively higher, and no more than 5% lower than that for particles of 100 nm.
Journal Article

Efficacy of EGR and Boost in Single-Injection Enabled Low Temperature Combustion

2009-04-20
2009-01-1126
Exhaust gas recirculation, fuel injection strategy and boost pressure are among the key enablers to attain low NOx and soot emissions simultaneously on modern diesel engines. In this work, the individual influence of these parameters on the emissions are investigated independently for engine loads up to 8 bar IMEP. A single-shot fuel injection strategy has been deployed to push the diesel cycle into low temperature combustion with EGR. The results indicated that NOx was a stronger respondent to injection pressure levels than to boost when the EGR ratio is relatively low. However, when the EGR level was sufficiently high, the NOx was virtually grounded and the effect of boost or injection pressure becomes irrelevant. Further tests indicated that a higher injection pressure lowered soot emissions across the EGR sweeps while the effect of boost on the soot reduction appeared significant only at higher soot levels.
Journal Article

Sources of UHC Emissions from a Light-Duty Diesel Engine Operating in a Partially Premixed Combustion Regime

2009-04-20
2009-01-1446
Sources of unburned hydrocarbon (UHC) emissions are examined for a highly dilute (10% oxygen concentration), moderately boosted (1.5 bar), low load (3.0 bar IMEP) operating condition in a single-cylinder, light-duty, optically accessible diesel engine undergoing partially-premixed low-temperature combustion (LTC). The evolution of the in-cylinder spatial distribution of UHC is observed throughout the combustion event through measurement of liquid fuel distributions via elastic light scattering, vapor and liquid fuel distributions via laser-induced fluorescence, and velocity fields via particle image velocimetry (PIV). The measurements are complemented by and contrasted with the predictions of multi-dimensional simulations employing a realistic, though reduced, chemical mechanism to describe the combustion process.
Journal Article

Development and Testing of an Innovative Oil Condition Sensor

2009-04-20
2009-01-1466
In order to detect degradation of engine oil lubricant, bench testing along with a number of diesel-powered Ford trucks were instruments and tested. The purpose of the bench testing was primarily to determine performance aspects such as repeatability, hysteresis effects and so on. Vehicle testing was conducted by designing and installing a separate oil reservoir along with a circulation system which was mounted in the vicinity of the oil pan. An innovative oil sensor was directly installed on the reservoir which can measure five (5) independent oil parameters (viscosity, density, permittivity, conductance, temperature). In addition, the concept is capable of detecting the oil level continuously during normal engine operation. The sensing system consists of an ultrasonic transducer for the oil level detection as well as a Tuning Fork mechanical resonator for the oil condition measurement.
Journal Article

Modeling the Emissions Control Performance of a Catalyzed Diesel Particulate Filter (CDPF) System for Light Duty Diesel Applications

2009-04-20
2009-01-1266
The use of catalyzed diesel particulate filter (CDPF) systems in light duty diesel (LDD) vehicles is becoming increasingly common. The primary functions of the system are to remove carbon monoxide (CO) and hydrocarbons (HC) from the vehicle exhaust stream, while simultaneously reducing the level of particulate matter (PM) emissions to ambient background levels. These systems can comprise either a separate diesel oxidation catalyst (DOC) and a downstream CDPF, or a single unit CDPF with the DOC functions incorporated within the CDPF. The single CDPF unit provides higher regeneration efficiency as it is located nearer to the engine and also cost benefits, as only a single unit is required compared to the alternative separate DOC and CDPF arrangement. A model describing the performance of the single unit CDPF for emissions control has been developed, with particular emphasis on achieving predictions of the CO and HC emissions over transient vehicle drive cycles.
Journal Article

3D Numerical Study of Pressure Loss Characteristics and Soot Leakage Through a Damaged DPF

2009-04-20
2009-01-1267
Diesel Particulate Filters (DPF) are widely used to meet 2007 and beyond EPA Particulate Matter (PM) emissions requirements. During the soot loading process, soot is collected inside a porous wall and eventually forms a soot cake layer on the surface of the DPF inlet channel walls. A densely packaged soot layer and reduced pore size due to Particulate Matter (PM) deposition will reduce overall DPF wall permeability which results in increasing pressure drop across the DPF substrate. A regeneration process needs to be enacted to burn out all the soot collected inside the DPF. Soot mass is not always evenly distributed as the distribution is affected by the flow and temperature distribution at the DPF inlet. As a result, the heat release which is determined by the burn rate is locally dependent. High temperature gradients are often found inside DPF substrate as a result of these locally dependent burn rates.
Journal Article

Analysis of the Correlation Between Engine-Out Particulates and Local Φ in the Lift-Off Region of a Heavy Duty Diesel Engine Using Raman Spectroscopy

2009-04-20
2009-01-1357
The local equivalence ratio, Φ, was measured in fuel jets using laser-induced spontaneous Raman scattering in an optical heavy duty diesel engine. The measurements were performed at 1200 rpm and quarter load (6 bar IMEP). The objective was to study factors influencing soot formation, such as gas entrainment and lift-off position, and to find correlations with engine-out particulate matter (PM) levels. The effects of nozzle hole size, injection pressure, inlet oxygen concentration, and ambient density at TDC were studied. The position of the lift–off region was determined from OH chemiluminescence images of the flame. The liquid penetration length was measured with Mie scattering to ensure that the Raman measurement was performed in the gaseous part of the spray. The local Φ value was successfully measured inside a fuel jet. A surprisingly low correlation coefficient between engine-out PM and the local Φ in the reaction zone were observed.
Journal Article

Study of the Mixing and Combustion Processes of Consecutive Short Double Diesel Injections

2009-04-20
2009-01-1352
The mixing and combustion processes of short double Diesel injections are investigated by optical diagnostics. A single hole Common Rail Diesel injector allowing high injection pressure up to 120MPa is used. The spray is observed in a high pressure, high temperature cell that reproduces the thermodynamic conditions which exist in the combustion chamber of a Diesel engine during injection. Three configurations are studied: a single short injection serving as a reference case and two double short injections with short and long dwell time (time between the injections). Several optical diagnostics were performed successively. The mixing process is studied by normalized Laser Induced Exciplex Fluorescence giving access to the vapor fuel concentration fields. In addition, the flow fields both inside and outside the jets are characterized by Particle Imaging Velocimetry.
Journal Article

Entrainment Waves in Diesel Jets

2009-04-20
2009-01-1355
Recent measurements in transient diesel jets have shown that fuel in the wake of the injection pulse mixes with ambient gases more rapidly than in a steady jet. This rapid mixing after the end of injection (EOI) can create fuel-lean regions near the fuel injector. These lean regions may not burn to completion for conditions where autoignition occurs after EOI, as is typical of low-temperature combustion (LTC) diesel engines. In this study, transient diesel jets are analyzed using a simple one-dimensional jet model. The model predicts that after EOI, a region of increased entrainment, termed the “entrainment wave,” travels downstream at twice the initial jet propagation rate. The entrainment wave increases mixing by up to a factor of three. This entrainment wave is not specific to LTC jets, but rather it is important for both conventional diesel combustion and LTC conditions.
Journal Article

CO Emission Model for an Integrated Diesel Engine, Emissions, and Exhaust Aftertreatment System Level Model

2009-04-20
2009-01-1511
A kinetic carbon monoxide (CO) emission model is developed to simulate engine out CO emissions for conventional diesel combustion. The model also incorporates physics governing CO emissions for low temperature combustion (LTC). The emission model will be used in an integrated system level model to simulate the operation and interaction of conventional and low temperature diesel combustion with aftertreatment devices. The Integrated System Model consists of component models for the diesel engine, engine-out emissions (such as NOx and Particulate Matter), and aftertreatment devices (such as DOC and DPF). The addition of CO emissions model will enhance the capability of the Integrated System Model to predict major emission species, especially for low temperature combustion. In this work a CO emission model is developed based on a two-step global kinetic mechanism [8].
Journal Article

Uncertainties in Filter Mass Measurements Made to Determine Compliance with the 2007 Diesel PM Standard

2009-04-20
2009-01-1516
The 2007 Diesel particulate matter (DPM) standard of 0.01 g/bhp-hr represents a 90% reduction of the previous standard and corresponds to roughly 100 micrograms (μg) gained on the filter sample used to determine compliance. The factors that influence the accuracy and precision by which this filter can be weighed are analyzed and quantified. The total uncertainty, representing best and typical cases, is between 1 and 5 μg. These uncertainties are used to compute the total uncertainty of the brake specific emission calculation. This uncertainty also depends on flowrate uncertainty, face velocity, and secondary dilution ratio. For a typical case, the total fractional uncertainty is in the range of ∼5 – 70% at 10% of the standard and ∼1 – 10% at 90% of the standard.
Journal Article

Empirical Modeling of Transient Emissions and Transient Response for Transient Optimization

2009-04-20
2009-01-1508
Empirical models for engine-out oxides of Nitrogen (NOx) and smoke emissions have been developed for the purpose of minimizing transient emissions while maintaining transient response. Three major issues have been addressed: data acquisition, data processing and modeling method. Real and virtual transient parameters have been identified for acquisition. Accounting for the phase shift between transient engine events and transient emission measurements has been shown to be very important to the quality of model predictions. Several methods have been employed to account for the transient transport delays and sensor lags which constitute the phase shift. Finally several different empirical modeling methods have been used to determine the most suitable modeling method for transient emissions. These modeling methods include several kinds of neural networks, global regression and localized regression.
Journal Article

Factors Influencing Mass Collected During 2007 Diesel PM Filter Sampling

2009-04-20
2009-01-1517
EPA's 2007 Diesel particulate matter (DPM) standard requires a large reduction in total mass emissions. In practice, this amounts to a fractional reduction in elemental carbon emissions. The reduction is balanced by a fractional increase in the semi-volatile component, which is difficult to sample and quantify accurately at low concentrations using filter-based methods. In this work, we show how five imprecisely defined filter-sampling parameters influence the mass collected on a filter. These parameters are: dilution air quality, dilution conditions (dilution ratio and dilution air temperature), particle size classification, filter media and artifacts, and face velocity. Each factor has the potential to change the mass collected by a minimum of 5% of the standard, suggesting there is room for improvement.
Journal Article

Development of a Fuel Injection Strategy for Partially Premixed Compression Ignition Combustion

2009-04-20
2009-01-1527
A production version of a V-8 engine was redesigned to run on partially premixed charge compression ignition (PCCI) combustion mode with conventional diesel fuel. The objective of the PCCI combustion experiments was to obtain low engine-out nitrogen oxide (NOx) and after-treatment tolerant soot emission level. Two fuel injection strategies were used during the PCCI combustion experiments: a) pilot-with-main injection strategy (Pil-M), b) pilot-with-main-and-post (PMP) injection strategy. In the Pil-M injection strategy, a significant fraction of the fuel was delivered early during the compression stroke. The early pilot helped to prepare a lean-mixture of enhanced homogeneity before the combustion was initiated. The combustion of this pilot injection followed by the main combustion helped to reduce soot for a constant NOx value. The pilot-injection timing and quantity had to be selected appropriately to retain the fuel-efficiency.
Journal Article

Evaluation of SCR Catalyst Technology on Diesel Particulate Filters

2009-04-20
2009-01-0910
Selective Catalytic Reduction (SCR) catalysts have been demonstrated as effective for controlling NOx emissions from diesel engines, maintaining high NOx conversion even after the extended high temperature exposure encountered in systems with active filter regenerations. As future diesel emission regulations are expected to be further reduced, packaging a large volume of SCR catalysts in diesel exhaust systems, along with DOC and particulate filter catalysts, will be challenging. One method to reduce the total volume of catalysts in diesel exhaust systems is to combine the SCR and DPF catalysts by coating SCR catalyst technology on particulate filters. In this work, engine evaluation of SCR coated filters has been conducted to determine the viability of the technology. Steady-state engine evaluations demonstrated that high NOx conversions can be achieved for SCR coated filters after high temperature oven aging.
Journal Article

Laboratory Study of Soot, Propylene, and Diesel Fuel Impact on Zeolite-Based SCR Filter Catalysts

2009-04-20
2009-01-0903
Selective Catalytic Reduction (SCR) catalysts have been designed to reduce NOx with the assistance of an ammonia-based reductant. Diesel Particulate Filters (DPF) have been designed to trap and eventually oxidize particulate matter (PM). Combining the SCR function within the wall of a high porosity particulate filter substrate has the potential to reduce the overall complexity of the aftertreatment system while maintaining the required NOx and PM performance. The concept, termed Selective Catalytic Reduction Filter (SCRF) was studied using a synthetic gas bench to determine the NOx conversion robustness from soot, coke, and hydrocarbon deposition. Soot deposition, coke derived from propylene exposure, and coke derived from diesel fuel exposure negatively affected the NOx conversion. The type of soot and/or coke responsible for the inhibited NOx conversion did not contribute to the SCRF backpressure.
X