Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

An Analysis of Lubricating Gap Flow in Radial Piston Machines

2014-09-30
2014-01-2407
Radial piston units find several applications in fluid power, offering benefits of low noise and high power density. The capability to generate high pressures makes radial piston pumps suitable for clamping function in machine tools and also to operate presses for sheet metal forming. This study is aimed at developing a comprehensive multidomain simulation tool to model the operation of a rotating cam type radial piston pump, with particular reference to the lubricating gap flow between the pistons and the cylinder block. The model consists of a first module which simulates the main flow through the unit according to a lumped parameter approach. This module evaluates the features of the displacing action accounting for the detailed evaluation of the machine kinematics and for the mechanical dynamics of the check valves used to control the timing for the connection of each piston chamber with the inlet and outlet port.
Journal Article

An Inclusive, System-Oriented Approach for the Study and the Design of Hydrostatic Transmissions: The Case of an Articulated Boom Lift

2008-10-07
2008-01-2686
When the designer's target is the optimization of a composite system, the analysis of the interactions between the different elements of the system becomes a crucial topic. As a matter of fact, in some cases, the effect of these interactions can become more important than the behavior of each individual component. In the area of fluid power, this problem is very common. In particular the case of hydraulic powered transmission for mobile applications can be considered a paradigm of these problems. This paper presents an original numerical approach to study and design of a hydrostatic transmission: the target is the optimization of the system as a whole, taking into account the characterization and the interaction among all parts. First, the system and the application are presented; the attention is focused on the analysis and modeling of its hydraulic parts (pumps, motors, valves).
Journal Article

Gerotor Pumps for Automotive Drivetrain Applications: A Multi Domain Simulation Approach

2011-09-13
2011-01-2272
This paper presents a simulation model for the analysis of internal gear ring pumps. The model follows a multi domain simulation approach comprising sub-models for parametric geometry generation, fluid dynamic simulation, numerical calculation of characteristic geometry data and CAD/FEM integration. The sub-models are interacting in different domains and relevant design and simulation parameters are accessible in a central, easy to handle graphical user interface. The potentials of the described tool are represented by simulation results for both steady state and transient pump operating conditions and by their correlation with measured data. Although the presented approach is suitable to all applications of gear ring pumps, a particular focus is given to hydraulic actuation systems used in automotive drivetrain applications.
Journal Article

A Novel Pressure-Feedback Based Adaptive Control Method to Damp Instabilities in Hydraulic Machines

2012-09-24
2012-01-2035
Excessive vibration and poor controllability occur in many mobile fluid power applications, with negative consequences as concerns operators' health and comfort as well as machine safety and productivity. This paper addresses the problem of reducing oscillations in fluid power machines presenting a novel control technique of general applicability. Strong nonlinearities of hydraulic systems and the unpredictable operating conditions of the specific application (e.g. uneven ground, varying loads, etc.) are the main challenges to the development of satisfactory general vibration damping methods. The state of the art methods are typically designed as a function of the specific application, and in many cases they introduce energy dissipation and/or system slowdown. This paper contributes to this research by introducing an energy efficient active damping method based on feedback signals from pressure sensors mounted on the flow control valve block.
Technical Paper

Modeling and Optimization of the Control Strategy for the Hydraulic System of an Articulated Boom Lift

2010-10-05
2010-01-2006
This paper describes the numerical modeling of the hydraulic circuit of a self-moving boom lift. Boom lifts consist of several hydraulic actuators, each of them performs a specific movement. Hydraulic systems for lifting applications must ensure consistent performance no matter what the load and how many users are in operation at the same time. Common solutions comprise a fixed or a variable displacement pump with load-sensing control strategy. Instead, the hydraulic circuit studied in this paper includes a fixed displacement pump and an innovative (patented) proportional valve assembly. Each proportional valve (one for each user) permits a flow regulation for all typical load conditions and movement simultaneously. The study of the hydraulic system required a detailed modeling of some components such as: the overcenter valves, for the control of the assistive loads; the proportional valve, which keeps a constant flow independently of pressure drop across itself.
Technical Paper

Active Vibration Damping for Construction Machines Based on Frequency Identification

2016-09-27
2016-01-8121
Typically, earthmoving machines do not have wheel suspensions. This lack of components often causes uncomfortable driving, and in some cases reduces machine productivity and safety. Several solutions to this problem have been proposed in the last decades, and particularly successful is the passive solution based on the introduction of accumulators in the hydraulic circuit connecting the machine boom. The extra capacitance effect created by the accumulator causes a magnification of the boom oscillations, in such a way that these oscillations counter-react the machine oscillation caused by the driving on uneven ground. This principle of counter-reacting machine oscillations through the boom motion can be achieved also with electro-hydraulic solutions, properly actuating the flow supply to the boom actuators on the basis of a feedback sensors and a proper control strategy.
Technical Paper

A Simulation Model for a Tandem External Gear Pump for Automotive Transmission

2018-04-03
2018-01-0403
This paper describes a simulation approach for the modeling of tandem external gear pumps. A tandem gear pump is the combination of two pumps with a common drive shaft. Such design architecture finds application in certain automotive transmission systems. The model presented in this work is applicable for pumps with both helical and spur gears. The simulation model is built on the HYGESim (HYdraulic GEars machines Simulator) previously developed by the authors for external spur gear units. In this work, the model formulation is properly extended to the capabilities of simulating helical gears. Starting directly from the CAD drawings of the unit, the fluid-dynamic model solves the internal instantaneous tooth space volume pressures and the internal flows following a lumped parameter approach. The simulation tool considers also the radial micro-motion of the gears, which influences the internal leakages and the features of the meshing process.
Technical Paper

Multi-Objective Optimization of Gerotor Port Design by Genetic Algorithm with Considerations on Kinematic vs. Actual Flow Ripple

2019-04-02
2019-01-0827
The kinematic flow ripple for gerotor pumps is often used as a metric for comparison among different gearsets. However, compressibility, internal leakages, and throttling effects have an impact on the performance of the pump and cause the real flow ripple to deviate from the kinematic flow ripple. To counter this phenomenon, the ports can be designed to account for fluid effects to reduce the outlet flow ripple, internal pressure peaks, and localized cavitation due to throttling while simultaneously improving the volumetric efficiency. The design of the ports is typically heuristic, but a more advanced approach can be to use a numerical fluid model for virtual prototyping. In this work, a multi-objective optimization by genetic algorithm using an experimentally validated, lumped parameter, fluid-dynamic model is used to design the port geometry.
Technical Paper

A Transfer Path Approach for Experimentally Determining the Noise Impact of Hydraulic Components

2015-09-29
2015-01-2854
This work contributes to the overall goal of identifying and reducing noise sources and propagation in hydraulic systems. This is a general problem and a primary design concern for all fluid power applications. The need for new methods for identification of noise sources and transmission is evident in order to direct future modeling and experimental efforts aimed at reducing noise emissions of current fluid power machines. In this paper, this goal is accomplished through the formulation of noise functions used to identify contributions and transfer paths from different components of the system. An experimental method for noise transfer path analysis was developed and tested on a simple hydraulic system composed of a reference external gear pump, attached lines, and loading valve. Pressure oscillations in the working fluid are measured at the outlet of the pump. Surface vibrations are measured at multiple locations on the pump and connected system.
X