Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Investigation of Mars In-Situ Propellant Production

1997-07-01
972496
In-situ production of oxygen and methane for utilization as a return propellant from Mars for both sample-return and manned missions is currently being developed by NASA in cooperation with major aerospace companies. Various technologies are being evaluated using computer modeling and analysis at the system level. An integrated system that processes the carbon dioxide in the Mars atmosphere to produce liquid propellants has been analyzed. The system is based on the Sabatier reaction that utilizes carbon dioxide and hydrogen to produce methane and water. The water is then electrolyzed to produce hydrogen and oxygen. While the hydrogen is recycled, the propellant gases are liquefied and stored for later use. The process model considers the surface conditions on Mars (temperature, pressure, composition), energy usage, and thermal integration effects on the overall system weight and size. Current mission scenarios require a system that will produce 0.7 kg of propellant a day for 500 days.
Technical Paper

CO2 Removal with Enhanced Molecular Sieves

1997-07-01
972431
In the closed environment of an inhabited spacecraft, a critical aspect of the air revitalization system is the removal of the carbon dioxide (CO2) and water vapor produced by the crew. A number of different techniques can be used for CO2 removal, but current methods are either non-regenerative or require a relatively high power input for thermal regeneration. Two-bed CO2 adsorption systems that can remove CO2 from humid air and be regenerated using pressure-swing desorption offer mass, volume, and power advantages when compared with the other methods. Two classes of sorbent materials show particular promise for this application: Zeolite sorbents, similar to those in the International Space Station (ISS) CO2 removal assembly Functionalized carbon molecular sieves (FCMS), which adsorb CO2 independent of the humidity in the airstream Pressure-swing testing of these two different sorbents under both space station and space suit conditions are currently underway.
Technical Paper

Performance of the Atmosphere Revitalization System During Phase II of the Lunar-Mars Life Support Test Project

1997-07-01
972418
The Lunar-Mars Life Support Test Project (LMLSTP), formerly known as the Early Human Testing Initiative (EHTI), was established to perform the necessary research, technology development, integration, and verification of regenerative life support systems to provide safe, reliable, and self-sufficient human life support systems. Four advanced life support system test phases make up LMLSTP. Phase I of the test program demonstrated the use of plants to provide the atmosphere revitalization requirements of a single test subject for 15 days. The primary objective of the Phase II test was to demonstrate an integrated regenerative life support system capable of sustaining a human crew of four for 30 days in a closed chamber. The third test phase, known as Phase IIA, served as a demonstration of International Space Station (ISS) representative life support technology, supporting a human crew of four for 60 days.
Technical Paper

Columbus Orbital Facility Condensing Heat Exchanger and Filter Assembly

1997-07-01
972409
Space environmental control systems must control cabin temperature and humidity. This can be achieved by transferring the heat load to a circulating coolant, condensing the humidity, and separating the condensate from the air stream. In addition, environmental control systems may be required to remove particulate matter from the air stream. An assembly comprised of a filter, a condensing heat exchanger, a thermal control valve, and a liquid carryover sensor, is used to achieve all these requirements. A condensing heat exchanger and filter assembly (CHXFA) is being developed and manufactured by SECAN/AlliedSignal under a contract from Dornier Daimler-Benz as part of a European Space Agency program. The CHXFA is part of the environmental control system of the Columbus Orbital Facility (COF), the European laboratory module of the International Space Station (ISS).
Technical Paper

A Thermal Control System Dual-Membrane Gas Trap for the International Space Station

1997-07-01
972410
The dual membrane gas trap filter is utilized in the internal thermal control system (ITCS) as part of the pump package assembly to remove non-condensed gases from the ITCS coolant. This improves pump performance and prevents pump cavitation. The gas trap also provides the capability to vent air that is Ingested into the ITCS during routine maintenance and replacement of the International Space Station (ISS) system orbital replacement units. The gas trap is composed of two types of membranes that are formed into a cylindrical module and then encased within a titanium housing. The non-condensed gas that is captured is then allowed to escape through a vent tube in the gas trap housing.
Technical Paper

Development of a Hydrophilic, Antimicrobial Coating for Condensing Heat Exchangers

1997-07-01
972408
Condensing heat exchangers (CHX) are used in many applications, including space life support systems, to control temperature and humidity. Temperature control is achieved by transfer of the heat load to a circulating coolant. Simultaneously, humidity control is provided by cooling the air below its dew point, and separating the condensed water from the gas flow. In space, the condensate does not drain from the heat exchanger because of the absence of gravity. To overcome this problem, slurping condensing heat exchangers have been developed that combine a hydrophilic coating on the air flow passages and an additional slurping section added to the air outlet of the heat exchanger to achieve efficient air-water separation. For short missions such as those typical for shuttle flights, microbial proliferation in the coatings has not been a major issue, despite the fact that the coatings are continuously moist and an ideal breeding ground for microbial species.
Technical Paper

The Lunar-Mars Life Support Test Project Phase III 90-day Test: The Crew Perspective

1998-07-13
981702
The Lunar-Mars Life Support Test Project (LMLSTP) Phase III test examined the use of biological and physicochemical life support technologies for the recovery of potable water from waste water, the regeneration of breathable air, and the maintenance of a shirt-sleeve environment for a crew of four persons for 91 days. This represents the longest duration ground-test of life support systems with humans performed in the United States. This paper will describe the test from the inside viewpoint, concentrating on three major areas: maintenance and repair of life support elements, the scientific projects performed primarily in support of the International Space Station, and numerous activities in the areas of public affairs and education outreach.
Technical Paper

Development of the Flame Detector for Space Station Freedom

1993-07-01
932106
One of the primary safety concerns for Space Station Freedom pressurized modules is fire. Some Freedom modules are unattended for long periods of time. In other cases, enclosed, pressurized volumes are not open to crew monitoring. As a result, a fire detection system is required to continuously monitor all modules for combustion. This paper briefly reviews the overall design for the Freedom fire detection system, and the design of the two basic types of detectors: smoke and flame. The smoke detectors monitor particulates in small open areas, stand-offs, end-cones, and racks. The flame detectors survey open areas for radiation at wavelengths and intensities characteristic of combustion. Responses from detectors are evaluated by Freedom's data management system to determine the presence of combustion and to recommend appropriate action.
Technical Paper

Molecular Sieve CO2 Removal Systems for Future Missions: Test Results and Alternative Designs

1994-06-01
941396
Reversible adsorption on zeolite molecular sieve material allows selective removal of carbon dioxide (CO2) from spacecraft air without the use of expendables. The four-bed molecular sieve (4BMS) CO2 removal subsystem chosen for use on space station is based on proven Skylab technology and provides continuous CO2 removal from the cabin atmosphere and concentration for further processing downstream or venting overboard. A 4BMS subsystem has also been chosen to remove CO2 from air in the Systems Integration Research Facility (SIRF) at NASA/Johnson Space Center (JSC). After installation in the SIRF in 1992, the subsystem underwent extensive testing in which cycle time, process air flow rate, and process air inlet CO2 composition were varied. In order to obtain performance data required for integration, the subsystem was operated under both nominal and off-nominal conditions. Results of this testing are presented.
Technical Paper

Periodic 10 K Metal Hydride Sorption Cryocooler System

1994-06-01
941621
A program is being performed to design, fabricate, and test a metal hydride sorption cryocooler system capable of supplying periodic refrigeration at 10 K. The system is intended to cool a focal plane array for a low-earth orbit satellite. The refrigeration is effected by sublimating solid hydrogen at 10 K. The solid hydrogen is produced in a batch process by cooling, solidifying, and subcooling liquid hydrogen formed at 30 K by a Joule-Thomson expansion. The spent hydrogen from the sublimation and Joule-Thomson expansion is absorbed by two metal hydride sorption bed assemblies.
Technical Paper

An Advanced Water Recovery Program

1996-07-01
961336
This paper reviews designs of urine distillation systems for spacecraft water recovery. Consideration is given to both air evaporation and vacuum distillation cycles, to the means for improving cycle performance (such as heat pumps, multistaging, and rotary evaporators), and to system concepts offering promise for future development. Vacuum distillation offers lower power consumption, at some increase in system complexity; air evaporation distillation is capable of providing higher water recovery efficiency, which could offset the lower power consumption advantage of vacuum distillation for long-duration missions.
Technical Paper

Development of a Regenerable Metal Oxide CO2 Absorber for EMU Applications

1996-07-01
961483
A regenerable metal oxide CO2 absorber is being developed for future Extravehicular Mobility Unit (EMU) applications. It was designed to fit the existing shuttle EMU without modification of the interfaces. Absorption and regeneration tests were performed with subscale and full-size laboratory absorbers. Data is presented for open and closed loop absorber tests that evaluate the effects of residence time, mass velocity, and internal temperature on performance, with emphasis is on the full-size test unit. Regeneration testing quantified the effects of temperature and air flow rate on desorption rate, and of various absorber cooling modes. Its objective was to optimize conditions for minimum peak power and minimum total energy consumption.
Technical Paper

Real-Time Executive Monitor (RTEM)

1994-10-01
942169
The use of redundant avionic architecture on modern aircraft for both Flight Control and Mission Management has intensified the requirements for Condition Monitoring of Critical Control and Computational functions. The Application of a REAL-TIME EXECUTIVE MODULE (RTEM) provides a core element of detection for departures from norm or nominal expected performance in such systems. The RTEM performs all Fault Tolerant operations and functions including Fault Tolerant Communication, Inter-Lane Control, Synchronization, Real-Time Task Scheduling, Data Voting, Message Error Checking, Error Detection and Reporting, Graceful Degradation, Dynamic System Reconfiguration and Application Interface Specifics.
Technical Paper

The Continuing Evolution of the C-130 Environmental Control System

1999-07-12
1999-01-2163
The vast array of C-130 applications demand a variety of air conditioning solutions to meet the specific needs of each variant and its user. Existing C-130′s are often reconfigured for special use such as airborne early warning and control (AEW&C), electronic surveillance, or armed reconnaissance, or just upgraded to current flight standards where new equipment is added to the aircraft that significantly increases the heat load on the air conditioning system. These factors dictate the need for high-, middle-, and low-end solutions to deliver the increased cooling capacity required at a price each user can afford. This paper will recap the evolution of the C-130 environmental control system (ECS) to date, summarize current improvement efforts, and suggest future ECS developments.
X