Refine Your Search

Topic

Author

Search Results

Journal Article

An Overview of the V&V of Flight-Critical Systems Effort at NASA

2011-10-18
2011-01-2560
As the US is getting ready for the Next Generation (NextGen) of Air Traffic System, there is a growing concern that the current techniques for verification and validation will not be adequate for the changes to come. The JPDO (in charge of implementing NextGen) has given NASA a mandate to address the problem and it resulted in the formulation of the V&V of Flight-Critical Systems effort. This research effort is divided into four themes: argument-based safety assurance, distributed systems, authority and autonomy, and, software intensive systems. This paper presents an overview of the technologies that will address the problem.
Technical Paper

Assessment of Silver Based Disinfection Technology for CEV and Future US Spacecraft

2007-07-09
2007-01-3258
Silver biocide offers a potential advantage over iodine, the current state-of-the-art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. As such, silver may reduce the overall complexity and mass of future spacecraft potable water systems, particularly those used to support long duration missions. A primary technology gap identified for the use of silver biocide is one of material compatibility. Wetted materials of construction are required to be selected such that silver ion concentrations can be maintained at biocidally effective levels.
Technical Paper

Effects of Relative Humidity on the Adsorption of Dichloromethane by Carbosieve SIII

2007-07-09
2007-01-3249
Carbosieve SIII was used to filter dichloromethane (DCM) from a simulated spacecraft gas stream. This adsorbent was tested as a possible commercial-off-the-shelf (COTS) filtration solution to controlling spacecraft air quality. DCM is a halocarbon commonly used in manufacturing for cleaning and degreasing and is a typical component of equipment offgassing in spacecraft. The performance of the filter was measured in dry and humid atmospheres. A known concentration of DCM was passed through the adsorbent at a known flow rate. The adsorbent removed dichloromethane until it reached the breakthrough volume. Carbosieve SIII exposed to dry atmospheric conditions adsorbed more DCM than when exposed to humid air. Carbosieve SIII is a useful thermally regenerated adsorbent for filtering DCM from spacecraft cabin air. However, in humid environments the gas passes through the filter sooner due to co-adsorption of additional water vapor from the atmosphere.
Technical Paper

Assessment of Silver Based Disinfection Technology for CEV and Future US Spacecraft: Microbial Efficacy

2007-07-09
2007-01-3142
This work describes the microbiological assessment and materials compatibility of a silver-based biocide as an alternative to iodine for the Crew Exploration Vehicle (CEV) and future spacecraft potable water systems. In addition to physical and operational anti-microbial counter-measures, the prevention of microbial growth, biofilm formation, and microbiologically induced corrosion in water distribution and storage systems requires maintenance of a biologically-effective, residual biocide concentration in solution and on the wetted surfaces of the system. Because of the potential for biocide depletion in water distribution systems and the development of acquired biocide resistance within microbial populations, even sterile water with residual biocide may, over time, support the growth and/or proliferation of bacteria that pose a risk to crew health and environmental systems.
Technical Paper

Engine Icing Modeling and Simulation (Part I): Ice Crystal Accretion on Compression System Components and Modeling its Effects on Engine Performance

2011-06-13
2011-38-0025
During the past two decades the occurrence of ice accretion within commercial high bypass aircraft turbine engines under certain operating conditions has been reported. Numerous engine anomalies have taken place at high altitudes that were attributed to ice crystal ingestion such as degraded engine performance, engine roll back, compressor surge and stall, and even flameout of the combustor. As ice crystals are ingested into the engine and low pressure compression system, the air temperature increases and a portion of the ice melts allowing the ice-water mixture to stick to the metal surfaces of the engine core. The focus of this paper is on estimating the effects of ice accretion on the low pressure compressor, and quantifying its effects on the engine system throughout a notional flight trajectory. In this paper it was necessary to initially assume a temperature range in which engine icing would occur.
Technical Paper

Fundamental Ice Crystal Accretion Physics Studies

2011-06-13
2011-38-0018
Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice-crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations.
Technical Paper

Particle Trajectory and Icing Analysis of the E3 Turbofan Engine Using LEWICE3D Version 3

2011-06-13
2011-38-0048
Particle trajectory and ice shape calculations were made for the Energy Efficient Engine (E₃) using the LEWICE3D Version 3 software. The particle trajectory and icing computations were performed using the new "block-to-block" collection efficiency method which has been incorporated into the LEWICE3D Version 3 software. The E₃ was developed by NASA and GE in the early 1980s as a technology demonstrator and is representative of a modern high bypass turbofan engine. The E₃ flow field was calculated using the NASA Glenn ADPAC turbomachinery flow solver. Computations were performed for the low pressure compressor of the E₃ for a Mach .8 cruise condition at 11,887 meters assuming a standard warm day for three drop sizes and two drop distributions typically used in aircraft design and certification. Particle trajectory computations were made for water drop sizes of 5, 20 and 100 microns.
Technical Paper

Reduced Pressure Atmosphere Impacts on Life Support and Internal Thermal Systems

2006-07-17
2006-01-2247
Selecting the appropriate atmosphere for a spacecraft and mission is a complicated problem. NASA has previously used atmospheres from Earth normal composition and pressure to pure oxygen at low pressures. Future exploration missions will likely strike a compromise somewhere between the two, trying to balance operation impacts on EVA, safety concerns for flammability and health risks, life science and physiology questions, and other issues. Life support systems and internal thermal control systems are areas that will have to respond to changes in the atmospheric composition and pressure away from the Earth-like conditions currently used on the International Space Station. This paper examines life support and internal thermal control technologies currently in use or in development to find what impacts in design, efficiency and performance, or feasibility might be expected.
Technical Paper

Power System Monitoring and Source Control of the Space Station Freedom DC-Power System Testbed

1992-08-03
929300
Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the DC Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation.
Technical Paper

The Past as Prologue: A Look at Historical Flight Qualifications for Space Nuclear Systems

1992-08-03
929342
Currently the U.S. is sponsoring production of radioisotope thermoelectric generators (RTGs) for the Cassini mission to Saturn; the SP-100 space nuclear reactor power system for NASA applications; a thermionic space reactor program for DoD applications as well as early work on nuclear propulsion. In an era of heightened public concern about having successful space ventures it is important that a full understanding be developed of what it means to “flight qualify” a space nuclear system. As a contribution to the ongoing work this paper reviews several qualification programs, including the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions, the SNAP-10A space reactor, the Nuclear Engine for Rocket Vehicle Applications (NERVA), the F-1 chemical engine used on the Saturn-V, and the Space Shuttle Main Engines (SSMEs). Similarities and contrasts are noted.
Technical Paper

Computer Aiding for Low-Altitude Flight Simulation to Flight: A Case Study

1993-09-01
932518
NASA and the U.S. Army have designed, developed, and tested a Computer Aiding for Low-Altitude Helicopter Flight guidance system. This system provides guidance to the pilot for near-terrain covert helicopter operations. The guidance is presented to the pilot through symbology on a helmet mounted display. This system has demonstrated the feasibility of a pilot-centered concept of terrain flight guidance that preserves pilot flexibility and authority. The system was developed using extensive piloted simulation and then implemented in a UH-60 Blackhawk helicopter for flight development and evaluation. A close correlation between simulation and actual flight was found; however, in flight overall pilot workload increased and performance decreased. This paper presents a description of the basic system design, simulation, and flight evaluations.
Technical Paper

Technology Test Bed and Hydrogen Cold Flow Facilities at the Marshall Space Flight Center

1993-04-01
931435
The Technology Test Bed and Hydrogen Cold Flow facilities at NASA’s Marshall Space Flight Center (MSFC) in Huntsville, Alabama provide unique testing capabilities for the aerospace community. Located at the Advanced Engine Test Facility (AETF), these facilities are operated and maintained by MSFC Propulsion Laboratory personnel. They provide a systems and components level testing platform for validating new technology concepts and advanced systems design and for gaining a better understanding of test article internal environments. A discussion follows of the particular capabilities of each facility to provide a range of testing options for specific test articles.
Technical Paper

NASA's Advanced Life Support Technology Program

1994-06-01
941290
For reasons of safety as well as cost, increasingly lengthy space missions at unprecedented distances from Earth in the 21st century will require reductions in consumables and increases in the autonomy of spacecraft life support systems. Advanced life support technologies can increase mission productivity and enhance science yield by achieving reductions in the mass, volume, and power required to support human needs for long periods of time in sterile and hostile environments. Current investment in developing advanced life support systems for orbital research facilities will increase the productivity of these relatively near-term missions, while contributing to the technology base necessary for future human exploration missions.
Technical Paper

International Space Station U.S. Laboratory Outfitting, Part 1

1995-07-01
951597
This paper describes the current United States Laboratory (USL) outfitting following the transition from Space Station Freedom to International Space Station (ISS). The ISS USL is outfitted with eleven systems racks, an optical quality nadir window for earth viewing experiments and accommodations for thirteen International Standard Payload Racks (ISPRs). The international payloads utilize this outfitting in a “shirt sleeve” environment by sharing allocated system resources and flight crew time to perform long term microgravity experiments. These systems resources include Command and Data Handling, 120 Vdc power, liquid and air cooling, audio and video communication, space vacuum and location dependent levels of microgravity. The ISS USL outfitting configuration, user interfaces, systems performance and environmental conditions are included in this ICES paper.
Technical Paper

International Space Station Thermal Control Design Changes and Decision Rationale

1995-07-01
951648
Many changes have been approved for implementation into the International Space Station (ISS) design for Thermal Control (TC) since the System Design Review (SDR)conducted in March 1994. Some of the changes have resulted in changes in the basic content of the ISS TC Subsystem (TCS) while others have addressed more efficient ways of developing the system. The design changes were made to address several distinct facets of the program. Foremost was the intent to control costs of the ISS program. The intent to ensure that the ISS is not completely dependent on any one partner was a major reason for other changes. Refinement of the SDR design and identification and solution of problems with the SDR design resulted in other design changes. While the technology to be used for the ISS TC has remained the same during this period, significant changes have been made to the way the ISS thermal control technology is implemented.
Technical Paper

International Space Station U.S. Laboratory Outfitting, Part 2

1996-07-01
961342
This paper describes the current USL outfitting with design and development changes incorporated during the past year. The International Space Station (ISS) USL is outfitted with eleven systems racks, an optical quality nadir window for earth viewing experiments and accommodations for thirteen International Standard Payload Racks (ISPRs). International payloads utilize this outfitting in a “shirt sleeve” environment by sharing allocated system resources and flight crew time to perform long term microgravity experiments. Recent changes in Command and Data Handling, 120 Vdc power, liquid and air cooling, audio and video communication, space vacuum and microgravity systems resources are included. User interfaces, systems performance and environmental conditions, in addition to the ISS USL outfitting configuration, are also updated in this ICES paper.
Technical Paper

International Space Station (ISS) Environmental Controls & Life Support System (ECLSS) Manual Oxygen Management

2005-07-11
2005-01-2895
One of the most critical functions of ECLSS is to maintain the atmospheric oxygen concentration within habitable limits. On the ISS, this function is provided by the Major Constituent Analyzer (MCA). During ISS (International Space Station) crew increments 7 thru 9, the MCA was at risk of imminent failure as evident by sustained high ion-pump current levels. In the absence of continuous constituent measurement by the MCA, manual methods of estimating partial pressure of oxygen (ppO2) and concentration levels need to be developed and validated to: (1) ensure environmental control and life support, (2) prohibit ISS system and hardware damage, and (3) enable planned ISS activities that effect constituent balance.
Technical Paper

Agent Architecture for Aviation Data Integration System

2004-11-02
2004-01-3122
Aviation Data Integration System (ADIS) project explores methods and techniques for integrating heterogeneous aviation data to support aviation problem-solving activity. Aviation problem-solving activities include: engineering troubleshooting, incident and accident investigation, routine flight operations monitoring, flight plan deviation monitoring, safety assessment, maintenance procedure debugging, and training assessment. To provide optimal quality of service, ADIS utilizes distributed intelligent agents including data collection agents, coordinator agents and mediator agents. This paper describes the proposed agent-based architecture of the Aviation Data Integration System (ADIS).
Technical Paper

Toward Human-Robot Interface Standards: Use of Standardization and Intelligent Subsystems for Advancing Human-Robotic Competency in Space Exploration

2006-07-17
2006-01-2019
NASA's plans to implement the Vision for Space Exploration include extensive human-robot cooperation across an enterprise spanning multiple missions, systems, and decades. To make this practical, strong enterprise-level interface standards (data, power, communication, interaction, autonomy, and physical) will be required early in the systems and technology development cycle. Such standards should affect both the engineer and operator roles that humans adopt in their interactions with robots. For the engineer role, standards will result in reduced development lead-times, lower cost, and greater efficiency in deploying such systems. For the operator role, standards will result in common autonomy and interaction modes that reduce operator training, minimize workload, and apply to many different robotic platforms. Reduced quantities of spare hardware could also be a benefit of standardization.
Technical Paper

Development Status of Amine-based, Combined Humidity, CO2 and Trace Contaminant Control System for CEV

2006-07-17
2006-01-2192
Under a NASA-sponsored technology development project, a multi-disciplinary team consisting of industry, academia, and government organizations lead by Hamilton Sundstrand is developing an amine-based humidity and CO2 removal process and prototype equipment for Vision for Space Exploration (VSE) applications. Originally this project sought to research enhanced amine formulations and incorporate a trace contaminant control capability into the sorbent. In October 2005, NASA re-directed the project team to accelerate the delivery of hardware by approximately one year and emphasize deployment on board the Crew Exploration Vehicle (CEV) as the near-term developmental goal. Preliminary performance requirements were defined based on nominal and off-nominal conditions and the design effort was initiated using the baseline amine sorbent, SA9T.
X