Refine Your Search

Topic

Author

Search Results

Technical Paper

A Summary of Reynolds Number Effects on Some Recent Tests in the Langley 0.3-Meter Transonic Cryogenic Tunnel

1986-10-01
861765
Reynolds number effects noted from selected test programs conducted in the Langiey 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) are discussed. The tests, which cover a unit Reynolds number range from about 2.0 to 80.0 million per foot, summarize effects of Reynolds number on: 1) aerodynamic data from a supercritical airfoil, 2) results from several wall interference correction techniques, and 3) results obtained from advanced, cryogenic test techniques. The test techniques include 1) use of a cryogenic sidewall boundary layer removal system, 2) detailed pressure and hot wire measurements to determine test section flow quality, and 3) use of a new hot film system suitable for transition detection in a cryogenic wind tunnel. The results indicate that Reynolds number effects appear most significant when boundary layer transition effects are present and at high lift conditions when boundary layer separation exists on both the model and the tunnel sidewall.
Technical Paper

Numerical Simulation of Propulsion-Induced Aerodynamic Characteristics on a Wing-Afterbody Configuration with Thrust Vectoring

1991-04-01
911174
Aerodynamic effects induced from vectoring an exhaust jet are investigated using a well established thin-layer Reynolds averaged Navier-Stokes code. This multiple block code has been modified to allow for the specification of jet properties at a block face. The applicability of the resulting code for thrust vectoring applications is verified by comparing numerically and experimentally determined pressure coefficient distributions for a jet-wing afterbody configuration with a thrust-vectoring 2-D nozzle. Induced effects on the body and nearby wing from thrust vectoring are graphically illustrated.
Technical Paper

Biologically Inspired Micro-Flight Research

2003-09-08
2003-01-3042
Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hummingbirds and bats. With a vast number of potential civil and military applications, micro aerial vehicles represent an emerging sector of the aerospace market. This paper describes an ongoing research activity in which mechanization and control concepts for biologically inspired micro aerial vehicles are being explored. Research activities focusing on a flexible fixed-wing micro aerial vehicle design and a flapping-based micro aerial vehicle concept are presented.
Technical Paper

Comparison of Super-cooled Liquid Water Cloud Properties Derived from Satellite and Aircraft Measurements

2003-06-16
2003-01-2156
A theoretically based algorithm to derive super-cooled liquid water (SLW) cloud macrophysical and microphysical properties is applied to operational satellite data and compared to pilot reports (PIREPS – from commercial and private aircraft) of icing and to in-situ measurements collected from a NASA icing research aircraft. The method has been shown to correctly identify the existence of SLW provided there are no higher-level ice crystal clouds (i.e. cirrus) above the SLW deck. The satellite-derived SLW cloud properties, particularly the cloud temperature, optical thickness or water path and water droplet size, show good qualitative correspondence with aircraft observations and icing intensity reports. Preliminary efforts to quantify the relationship between the satellite retrievals, PIREPS and aircraft measurements are reported here. The goal is to determine the extent to which the satellite-derived cloud parameters can be used to improve icing diagnoses and forecasts.
Technical Paper

Ultrasonic Measurement of Aircraft Strut Hydraulic Fluid Level

2002-11-05
2002-01-2935
An ultrasonic method is presented for non-intrusively measuring hydraulic fluid level in aircraft struts in the field quickly and easily without modifying the strut or aircraft. The technique interrogates the strut with ultrasonic waves generated and received by a removable ultrasonic transducer hand-held on the outside of the strut in a fashion that inthe presence or absence of hydraulic fluid inside the strut. This technique was successfully demonstrated on an A-6 aircraft strut on the carriage at the Aircraft Landing Dynamics Research Facility at NASA Langley Research Center. Conventional practice upon detection of strut problem symptoms is to remove aircraft from service for extensive maintenance to determine fluid level. No practical technique like the method presented herein for locating strut hydraulic fluid level is currently known to be used.
Technical Paper

Wind-Tunnel Investigation of Commercial Transport Aircraft Aerodynamics at Extreme Flight Conditions

2002-11-05
2002-01-2912
A series of low-speed static and dynamic wind tunnel tests of a commercial transport configuration over an extended angle of attack/sideslip envelope was conducted at NASA Langley Research Center. The test results are intended for use in the development of an aerodynamic simulation database for determining aircraft flight characteristics at extreme and loss-of-control conditions. This database will be used for the development of loss-of-control prevention or mitigation systems, pilot training for recovery from such conditions, and accident investigations. An overview of the wind-tunnel tests is presented and the results of the tests are evaluated with respect to traditional simulation database development techniques for modeling extreme conditions to identify regions where simulation fidelity should be addressed.
Technical Paper

Braking, Steering, and Wear Performance of Radial-Belted and Bias-Ply Aircraft Tires

1992-04-01
921036
Preliminary braking, steering, and tread wear performance results from testing of 26 x 6.6 and 40 x 14 radial-belted and bias-ply aircraft tires at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are reviewed. These tire tests are part of a larger, ongoing joint NASA/FAA/Industry Surface Traction And Radial Tire (START) Program involving these two different tire sizes as well as an H46 x 18-20 tire size which has not yet been evaluated. Both dry and wet surface conditions were evaluated on two different test surfaces - nongrooved Portland cement concrete and specially constructed, hexagonal-shaped concrete paver blocks. Use of paver blocks at airport facilities has been limited to ramp and taxiway areas and the industry needs a tire friction evaluation of this paving material prior to additional airport pavement installations.
Technical Paper

Hybrid Laminar Flow Control Applied to Advanced Turbofan Engine Nacelles

1992-04-01
920962
In recent years, the National Aeronautics and Space Administration (NASA) in cooperation with U.S. industry has performed flight and wind-tunnel investigations aimed at demonstrating the feasibility of obtaining significant amounts of laminar boundary-layer flow at moderate Reynolds numbers on the swept-back wings of commercial transport aircraft. Significant local drag reductions have been recorded with the use of a hybrid laminar flow control (HLFC) concept. In this paper, we address the potential application of HLFC to the external surface of an advanced, high bypass ratio turbofan engine nacelle with a wetted area which approaches 15 percent of the wing total wetted area of future commercial transports. A pressure distribution compatible with HLFC is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer.
Technical Paper

Application of Laminar Flow Control to High-Bypass-Ratio Turbofan Engine Nacelles

1991-09-01
912114
Recently, the concept of the application of hybrid laminar flow to modern commercial transport aircraft was successfully flight tested on a Boeing 757 aircraft. In this limited demonstration, in which only part of the upper surface of the swept wing was designed for the attainment of laminar flow, significant local drag reduction was measured. This paper addresses the potential application of this technology to laminarize the external surface of large, modern turbofan engine nacelles which may comprise as much as 5-10 percent of the total wetted area of future commercial transports. A hybrid-laminar-fiow-control (HLFC) pressure distribution is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer. Performance studies are presented to determine potential benefits in terms of reduced fuel consumption.
Technical Paper

Nowcasting Aircraft Icing Conditions in the Presence of Multilayered Clouds Using Meteorological Satellite Data

2011-06-13
2011-38-0041
Cloud properties retrieved from satellite data are used to diagnose aircraft icing threat in single layer and multilayered ice-over-liquid clouds. The algorithms are being applied in real time to the Geostationary Operational Environmental Satellite (GOES) data over the CONUS with multilayer data available over the eastern CONUS. METEOSAT data are also used to retrieve icing conditions over western Europe. The icing algorithm's methodology and validation are discussed along with future enhancements and plans. The icing risk product is available in image and digital formats on NASA Langley ‘s Cloud and Radiation Products web site, http://www-angler.larc.nasa.gov.
Technical Paper

Aerodynamic Effects of Simulated Ice Accretion on a Generic Transport Model

2011-06-13
2011-38-0065
An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5% scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from α = -5 to 85 deg. and β = -45 to 45 deg. at a Reynolds number of 0.24x10⁶ and Mach number of 0.06. The 3.5% scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5% scale GTM.
Technical Paper

NASA's Fundamental Aeronautics Subsonic Fixed Wing Project: Generation N+3 Technology Portfolio

2011-10-18
2011-01-2521
Commercial aviation relies almost entirely on subsonic fixed wing aircraft to constantly move people and goods from one place to another across the globe. While air travel is an effective means of transportation providing an unmatched combination of speed and range, future subsonic aircraft must improve substantially to meet efficiency and environmental targets. The NASA Fundamental Aeronautics Subsonic Fixed Wing (SFW) Project addresses the comprehensive challenge of enabling revolutionary energy-efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies, and the development of unconventional aircraft systems, offer the potential to achieve these improvements.
Technical Paper

Next Generation NASA GA Advanced Concept

2006-08-30
2006-01-2430
Not only is the common dream of frequent personal flight travel going unfulfilled, the current generation of General Aviation (GA) is facing tremendous challenges that threaten to relegate the Single Engine Piston (SEP) aircraft market to a footnote in the history of U.S. aviation. A case is made that this crisis stems from a generally low utility coupled to a high cost that makes the SEP aircraft of relatively low transportation value and beyond the means of many. The roots of this low value are examined in a broad sense, and a Next Generation NASA Advanced GA Concept is presented that attacks those elements addressable by synergistic aircraft design.
Technical Paper

Wingtip Vortex Turbine Investigation for Vortex Energy Recovery

1990-09-01
901936
A flight test investigation has been conducted to determine the performance of wingtip vortex turbines and their effect on aircraft performance. The turbines were designed to recover part of the large energy loss (induced drag) caused by the wingtip vortex. The turbine, driven by the vortex flow, reduces the strength of the vortex, resulting in an associated induced drag reduction. A four-blade turbine was mounted on each wingtip of a single-engine, T-tail, general aviation airplane. Two sets of turbine blades were tested, one with a 15° twist (washin) and one with no twist. The power recovered by the turbine and the installed drag increment were measured. A trade-off between turbine power and induced drag reduction was found to be a function of turbine blade incidence angle. This test has demonstrated that the wingtip vortex turbine is an attractive alternate, as well as an emergency, power source.
Technical Paper

NASA Personal Air Transportation Technologies

2006-08-30
2006-01-2413
The ability to personalize air travel through the use of an on-demand, highly distributed air transportation system will provide the degree of freedom and control that Americans enjoy in other aspects of their life. This new capability, of traveling when, where, and how we want with greatly enhanced mobility, accessibility, and speed requires vehicle and airspace technologies to provide the equivalent of an internet PC ubiquity, to an air transportation system that now exists as a centralized hub and spoke mainframe NASA airspace related research in this new category of aviation has been conducted through the Small Aircraft Transportation (SATS) project, while the vehicle technology efforts have been conducted in the Personal Air Vehicle sector of the Vehicle Systems Program.
Technical Paper

The Third Wave of Aeronautics: On-Demand Mobility

2006-08-30
2006-01-2429
Aviation has experienced one hundred years of dynamic growth and change, resulting in the current air transportation system dominated by commercial airliners in a hub and spoke infrastructure. The first fifty years of aviation was a very chaotic, rapid evolutionary process involving disruptive technologies that required frequent adaptation. The second fifty years produced a stable evolutionary optimization of services based on achieving an objective function of decreased costs. In the third wave of aeronautics over the next fifty years, there is the potential for aviation to transform itself into a more robust, scalable, adaptive, secure, safe, affordable, convenient, efficient, and environmentally fare and friendly system.
Technical Paper

Aerodynamic-Performance Planform and Camber Optimization of a Supersonic Transport Wing

1993-09-01
932632
This paper describes recent research in integrated aerodynamic-performance design optimization applied to a supersonic transport wing. The subsonic and supersonic aerodynamics are modeled with linear theory and the aircraft performance is evaluated by using a complete mission analysis. The goal of the optimization problem is to either maximize the aircraft range or minimize the take-off gross weight while constraining the total fuel load and approach speed. A major difficulty encountered during this study was the inability to obtain accurate derivatives of the aerodynamic models with respect to the planform shape. This work addresses this problem and provides one solution for the derivative difficulties. Additional optimization studies reveal the impact of camber design on the global optimization problem. In these studies, the plan-form optimization is first conducted on a flat plate wing and camber optimization is performed on the resulting planform.
Technical Paper

NASA Evaluation of Type II Chemical Depositions

1993-09-01
932582
Recent findings from NASA Langley tests to define effects of aircraft Type II chemical deicer depositions on aircraft tire friction performance are summarized. The Aircraft Landing Dynamics Facility (ALDF) is described together with the scope of the tire cornering and braking friction tests conducted up to 160 knots ground speed. Some lower speed 32-96 km/hr (20-60 mph) test run data obtained using an Instrumented Tire Test Vehicle (ITTV) to determine effects of tire bearing pressure and transverse grooving on cornering friction performance are also discussed. Recommendations are made concerning which parameters should be evaluated in future testing.
Technical Paper

The Effect of Runway Surface and Braking on Shuttle Orbiter Main Gear Tire Wear

1992-10-01
922038
In 1988, a 1067 m long touchdown zone on each end of the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) was modified from its original heavy-broom finish with transverse grooves configuration to a longitudinal corduroy surface texture with no transverse grooves. The intent of this modification was to reduce the spin-up wear on the Orbiter main gear tires and provide for somewhat higher crosswind capabilities at that site. The modification worked well, so it was proposed that the remainder of the runway be modified as well to permit even higher crosswind landing capability. Tests were conducted at the NASA Langley Aircraft Landing Dynamics Facility (ALDF) to evaluate the merit of such a modification. This paper discusses the results of these tests, and explains why the proposed modification did not provide the expected improvement and thus was not implemented.
Technical Paper

Advanced Analysis Methods and Nondestructive Inspection Technology Under Development in the NASA Airframe Structural Integrity Program

1994-03-01
941247
An advanced analytical methodology has been developed for predicting the residual strength of stiffened thin-sheet riveted shell structures such as those used for the fuselage of a commercial transport aircraft. The crack-tip opening angle elastic-plastic fracture criterion has been coupled to a geometric and material nonlinear finite element shell code for analyzing complex structural behavior. An automated adaptive mesh refinement capability together with global-local analysis methods have been developed to predict the behavior of fuselage structure with long cracks. This methodology is currently being experimentally verified. Advanced nondestructive inspection technology has been developed that will provide airline operators with the capability to conduct reliable and economical broad-area inspections of aircraft structures.
X