Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Flying Test Bed Performance Testing of High-Bypass-Ratio Turbofans

2009-11-10
2009-01-3133
The commercial turbofan trend of increasing bypass ratio and decreasing fan pressure ratio has seen its latest market entry in Pratt & Whitney's PurePower™ product line, which will power regional aircraft for the Bombardier and Mitsubishi corporations, starting in 2013. The high-bypass-ratio, low-fan-pressure-ratio trend, which is aimed at diminishing noise while increasing propulsive efficiency, combines with contemporary business factors including the escalating cost of testing and limited availability of simulated altitude test sites to pose formidable challenges for engine certification and performance validation. Most fundamentally, high bypass ratio and low fan pressure ratio drive increased gross-to-net thrust ratio and decreased fan temperature rise, magnifying by a factor of two or more the sensitivity of in-flight thrust and low spool efficiency to errors of measurement and assumption, i.e., physical modeling.
Journal Article

Conversion of a Spark-Ignited Aircraft Engine to JP-8 Heavy Fuel for Use in Unmanned Aerial Vehicles

2011-04-12
2011-01-0145
In order to satisfy a single-fuel mandate, the U.S. Department of Defense has a need for engines in the 20 to 50 hp range to power midsized Unmanned Aerial Vehicles (UAVs) and the ability to operate on JP-8 also known as “heavy” fuel. It is possible to convert two-stroke aircraft engines designed to operate on a gasoline-oil mixture to run on JP-8/oil using the Sonex Combustion System (SCS) developed by Sonex Research, Inc. Conversion of the engine involves replacing the cylinder heads with new components designed to accept a steel combustion ring insert. Also required are glow-plugs to preheat the cylinder head prior to engine start. The converted engine produces the same power output as the stock engine operating on gasoline. Conversion of both a 20 hp and 40 hp engine was successfully achieved using the SCS.
Journal Article

Roll and Pitch Produced During an Uneven Wing Deployment of a Hybrid Projectile

2014-09-16
2014-01-2112
Uneven wing deployment of a Hybrid Projectile (HP), an Unmanned Aerial Vehicle (UAV) that is ballistically launched and then transforms, was investigated to determine the amount of roll and pitch produced during wing deployment. During testing of an HP prototype, it was noticed that sometimes the projectile began to slightly roll after the wings were deployed shortly after apogee. In this study, an analytical investigation was done to determine how the projectile body dynamics would be affected by the wings being deployed improperly. Improper and uneven wing deployment situations were investigated throughout the course of this study. The first analyzed was a single wing delaying to open. The second was if only one wing was to lock into a positive angle of incidence. The roll characteristics when both wings were deployed but only one was locked into an angle of incidence resulted in a steady state roll rate of 4.5 degrees per second.
Journal Article

Hybrid-Electric, Heavy-Fuel Propulsion System for Small Unmanned Aircraft

2014-09-16
2014-01-2222
A series hybrid-electric propulsion system has been designed for small rapid-response unmanned aircraft systems (UAS) with the goals of improving endurance, providing flexible and responsive electric propulsion, and enabling heavy fuel usage. The series hybrid architecture used a motor-driven propeller powered by a battery bank, which was recharged by an engine-driven generator, similar to other range-extended electric vehicles. The engine design focused on a custom, two-stroke, lean-burn, compression-ignition (CI), heavy-fuel engine, which was coupled with an integrated starter alternator (ISA) to provide electrical power. The heavy-fuel CI engine was designed for high power density, improved fuel efficiency, and compatibility with heavy fuels (e.g., diesel, JP-5, JP-8). Commercially available gasoline spark-ignition engines and heavy-fuel spark-ignition engines were also considered in the trade study.
Journal Article

A Comparison between Regular and Vibration-Assisted Drilling in CFRP/Ti6Al4V Stack

2014-09-16
2014-01-2236
As aircraft programs currently ramp up, productivity of assembly processes needs to be improved while keeping quality, reliability and manufacturing cost requirements. Efficiency of the drilling process still remains an issue particularly in the case of CFRP/metal stacks: hot and long metallic chips are difficult to remove and often damage the surface of CFRP holes. Low frequency axial vibration drilling has been proposed to solve this issue. This innovative drilling process allows breaking up the metallic chips in such a way that jamming is avoided. This paper presents a case of CFRP/Ti6Al4V drilling on a CNC machine where productivity must be increased. A comparison is made between the current regular process and the MITIS drilling process. First the analysis and comparison method is presented. The current process is analyzed and its limits are highlighted. Then the vibration process is implemented and its performances are studied.
Journal Article

Experimental Evaluation of Two Pitot Free Analytical Redundancy Techniques for the Estimation of the Airspeed of an UAV

2014-09-16
2014-01-2163
A measurement device that is extremely important for Unmanned Aerial Vehicle (UAV) guidance and control purposes is the airspeed sensor. As the parameters of feedback control laws are conventionally scheduled as a function of airspeed, an incorrect reading (e.g. due to a sensor fault) of the Pitot-static tube could induce an incorrect feedback control action, potentially leading to the loss of control of the UAV. The objective of this study is to establish the accuracy and reliability of the two airspeed estimation techniques for eventual use as the basis for real-time fault detection of anomalies occurring on the Pitot-static tube sensor. The first approach is based on an Extended Kalman Filter (EKF) and the second approach is based on Least Squares (LS) modeling. The EKF technique utilizes nonlinear kinematic relations between GPS, Inertial Measurement Unit and Air Data System signals and has the advantage of independence from knowledge of the aircraft model.
Journal Article

Teleoperation of Cooperative Control of Multiple Heterogeneous Slave Unmanned Aerial Vehicles via a Single Master Subsystem for Multi-Task Multi-Target Scenarios

2013-09-17
2013-01-2105
This paper proposes a control method to remotely operate cooperative multiple heterogeneous slave unmanned aerial vehicles (UAVs) via a single master robot to perform different tasks on different targets in one mission. The UAV team is formed by different automated aircrafts. They are equipped with a vehicle-task-target pairing algorithm to be assigned their proper tasks and targets when moving in a leader-follower formation to track and perform assigned targets and tasks, respectively. The proposed leader-follower formation control method is modified based on a potential field algorithm to guide the UAV team or sub-team. In the UAV team, only a single leader vehicle is teleoperated by a human operator while all other follower vehicles autonomously form the formation regarding the leader movement. Therefore, the number of long distance transmission links between UAVs is reduced to minimize the possibility of occurrences of large communication delays.
Journal Article

Comparison of a Blade Element Momentum Model to 3D CFD Simulations for Small Scale Propellers

2013-09-17
2013-01-2270
Many Small Unmanned Aerial Vehicles (SUAV) are driven by small scale, fixed blade propellers. Flow produced by the propeller can have a significant impact on the aerodynamics of a SUAV. Therefore, in Computational Fluid Dynamic (CFD) simulations, it is often necessary to simulate the SUAV and propeller coupled together. For computational efficiency, the propeller can be modeled in a steady-state view by using momentum source terms to add the thrust and swirl produced by the propeller to the flow field. Many momentum source term models are based on blade element theory. Blade element theory divides the blade into element sections in the spanwise direction and assumes each element to operate independently as a two-dimensional (2D) airfoil.
Journal Article

Flexible Trajectory Planning Framework using Optimal Control for Rotary and Fixed-Wing Aircrafts Mission Planning and Target-Pursuit

2013-09-17
2013-01-2264
Recent advances in small unmanned air vehicles (UAV) lead to robust on-board stabilized platforms ready to use for real-world problems. As a result, many different autonomy functions have been demonstrated, which allow controlling the UAVs at high level. However, the great variety of platforms also poses new challenges when adapting these autonomy functions to new platforms. For instance modifying a trajectory planning algorithm, which was designed for a rotary-aircraft with a moving camera, to work on a fixed-wing aircraft with a static camera is not a trivial task. Often such algorithmic solutions are tailored so specifically to a certain platform that it becomes very complicated to reuse algorithms. This results in a variety of many different approaches trying to solve the same task. We therefore encourage designing algorithms for UAVs autonomy function to be more generic. As an example, we focus on the task to autonomously follow a moving ground object using an UAV.
Journal Article

A De-Spin and Wings-Leveling Controller for a 40 mm Hybrid Projectile

2013-09-17
2013-01-2262
A Hybrid Projectile (HP) is a round that transforms into a UAV after being launched. Some HP's are fired from a rifled barrel and must be de-spun and wings-level for lifting surfaces to be deployed. Control surfaces and controllers for de-spinning and wings-leveling were required for initial design of an HP 40 mm. Wings, used as lifting surfaces after transformation, need to be very close to level with the ground when deployed. First, the tail surface area needed to de-spin a 40 mm HP was examined analytically and simulated. Next, a controller was developed to maintain a steady de-spin rate and to roll-level the projectile in preparation of wing deployment. The controller was split into two pieces, one to control de-spin, and the other for roll-leveling the projectile. An adaptable transition point for switching controllers was identified analytically and then adjusted by using simulations.
Journal Article

Computational Study of Coanda Adhesion Over Curved Surface

2013-09-17
2013-01-2302
This paper presents a set of numerical computations with different turbulence model on an air jet flowing tangentially over the curved surface. It has been realized that jet deflection angle and the corresponding thrust are important parameter to determine with great care. Through the grid independence analysis, it has been found that without resolution of the viscous sub-layer, it is not possible to determine the computationally independent angle of jet deflection and boundary layer thickness. The boundary layer analysis has been performed at different radius of curvature and at jet Reynolds number ranging from approximately about 2400-10,000. The boundary layer thickness has been determined at the verge of separation and found a relation with the radius of curvature and jet Reynolds number. The skin-friction coefficient has been also studied at the verge of separation in relation to the surface radius and jet Reynolds number.
Technical Paper

Autonomous Gesture-Based Control Drone Design

2021-08-16
2021-01-6000
The current drone market holds a lot of low-cost drones that can be controlled either remotely or autonomously. The command controlling signals can be deployed by using different methods and techniques to enhance the capabilities and missions of the drone. The microcontroller is usually used as the drone brain. Motion control and virtual reality (VR) techniques allow the user new possibilities for a more dynamic control experience. The goal of the present work is to design, develop, and deliver a working prototype of an enhanced VR motion-controlled drone. The developed prototype is an integrated system that includes an off-the-shelf drone, accelerometer and gyroscope unit, flex sensor, gloves, digital potentiometer, VR headset, and microcontroller. The flex sensor attached to the hand gloves allows a fully autonomous control of the drone using the movement of the hand. Hence, the gloves will allow for a more dynamic control of the drone.
Journal Article

Self-Adjusting Cutting Parameter Technique for Drilling Multi-Stacked Material

2015-09-15
2015-01-2502
This study investigates the self-adjusted cutting parameter technique to improve the drilling of multi-stacked material. The technique consists in changing the cutting strategy automatically, according to the material being machined. The success of this technique relies on an accurate signal analysis, whatever the process setting. Motor current or thrust force are mostly used as incoming signals. Today, analyses are based on the thresholding method. This consists in assigning lower and upper limits for each type of material. The material is then identified when the signal level is stabilized in between one of the thresholds. Good results are observed as long as signal steps are significantly distinct. This is the case when drilling TA6V-CFRP stacks. However, thrust force level remains roughly unchanged for AA7175-CFRP stacks, leading to overlapping thresholds. These boundary limits may also change with tool geometry, wear condition, cutting parameters, etc.
Journal Article

Mapping of Fuel Anti-Knock Requirements for a Small Remotely Piloted Aircraft Engine

2016-11-08
2016-32-0045
Small remotely piloted aircraft (10-25 kg) powered by internal combustion engines typically operate on motor gasoline, which has an anti-knock index (AKI) of >80. To comply with the single-battlefield-fuel initiative in DoD Directive 4140.25, interest has been increasing in converting the 1-10 kW power plants in the aforementioned size class to run on lower AKI fuels such as diesel and JP-8, which have AKIs of ~20. It has been speculated that the higher losses (short-circuiting, incomplete combustion, heat transfer) that cause these engines to have lower efficiencies than their conventional-scale counterparts may also relax the fuel-AKI requirements of the engines. To investigate that idea, the fuel-AKI requirement of a 3W-55i engine was mapped and compared to that of the engine on the manufacturer-recommended 98 octane number (ON) fuel.
Journal Article

Measurement of Loss Pathways in Small, Two-Stroke Internal-Combustion Engines

2017-03-14
2017-01-9276
The rapid expansion of the market for remotely piloted aircraft (RPA) includes a particular interest in 10-25 kg vehicles for monitoring, surveillance, and reconnaissance. Power-plant options for these aircraft are often 10-100 cm3 internal combustion engines. Both power and fuel conversion efficiency decrease with increasing rapidity in the aforementioned size range. Fuel conversion efficiency decreases from ∼30% for conventional-scale engines (>100 cm3 displacement) to <5% for micro glow-fuel engines (<10 cm3 displacement), while brake mean effective pressure decreases from >10 bar (>100 cm3) to <4 bar (<10 cm3). Based on research documented in the literature, the losses responsible for the increase in the rate of decreasing performance cannot be clearly defined. Energy balances consisting of five pathways were experimentally determined on two engines that are representative of Group-2 RPA propulsion systems and compared to those in the literature for larger and smaller engines.
Journal Article

Designing a Hybrid Electric Powertrain for an Unmanned Aircraft with a Commercial Optimization Software

2017-06-29
2017-01-9000
The design of a hybrid electric powertrain requires a complex optimization procedure because its performance will strongly depend on both the size of the components and the energy management strategy. The problem is particular critical in the aircraft field because of the strong constraints to be fulfilled (in particular in terms of weight and volume). The problem was addressed in the present investigation by linking an in-house simulation code for hybrid electric aircraft with a commercial many-objective optimization software. The design variables include the size of engine and electric motor, the specification of the battery (typology, nominal capacity, bus voltage), the cooling method of the motor and the battery management strategy. Several key performance indexes were suggested by the industrial partner. The four most important indexes were used as fitness functions: electric endurance, fuel consumption, take-off distance and powertrain volume.
Journal Article

A Method for the Evaluation of the Effectiveness of Turboelectric Distributed Propulsion Power System Architectures

2014-09-16
2014-01-2120
Radical new electrically propelled aircraft are being considered to meet strict future performance goals. One concept design proposed is a Turboelectric Distributed Propulsion (TeDP) aircraft that utilises a number of electrically driven propulsors. Such concepts place a new and significant reliance on an aircraft's electrical system for safe and efficient flight. Accordingly, in addition to providing certainty that supply reliability targets are being met, a contingency analysis, evaluating the probability of component failure within the electrical network and the impact of that failure upon the available thrust must also be undertaken for architecture designs. Solutions that meet specified thrust requirements at a minimum associated weight are desired as these will likely achieve the greatest performance against the proposed emissions targets.
Journal Article

Modeling and Simulation Enabled UAV Electrical Power System Design

2011-10-18
2011-01-2645
With the diversity of mission capability and the associated requirement for more advanced technologies, designing modern unmanned aerial vehicle (UAV) systems is an especially challenging task. In particular, the increasing reliance on the electrical power system for delivering key aircraft functions, both electrical and mechanical, requires that a systems-approach be employed in their development. A key factor in this process is the use of modeling and simulation to inform upon critical design choices made. However, effective systems-level simulation of complex UAV power systems presents many challenges, which must be addressed to maximize the value of such methods. This paper presents the initial stages of a power system design process for a medium altitude long endurance (MALE) UAV focusing particularly on the development of three full candidate architecture models and associated technologies.
Journal Article

An Experimental Investigation of the Transient Effects Associated with Wing Deployment During Ballistic Flight

2011-10-18
2011-01-2647
Mortar weapons systems have existed for more than five hundred years. Though modern tube-launched rounds are far more advanced than the cannon balls used in the 15th century, the parabolic trajectory and inability to steer the object after launch remains the same. Equipping the shell with extending aerodynamic surfaces transforms the unguided round into a maneuverable munition with increased range [1] and precision [2]. The subject of this work is the experimental analysis of transient aerodynamic behavior of a transforming tube-launched unmanned aerial vehicle (UAV) during transition from a ballistic trajectory to winged flight. Data was gathered using a series of wind tunnel experiments to determine the lift, drag, and pitching moment exerted on the prototype in various stages of wing deployment. Flight models of the design were broken down into three configurations: “round”, “transforming”, and “UAV”.
Journal Article

NASA System-Level Design, Analysis and Simulation Tools Research on NextGen

2011-10-18
2011-01-2716
A review of the research accomplished in 2009 in the System-Level Design, Analysis and Simulation Tools (SLDAST) of the NASA's Airspace Systems Program is presented. This research thrust focuses on the integrated system-level assessment of component level innovations, concepts and technologies of the Next Generation Air Traffic System (NextGen) under research in the ASP program to enable the development of revolutionary improvements and modernization of the National Airspace System. The review includes the accomplishments on baseline research and the advancements on design studies and system-level assessment, including the cluster analysis as an annualization standard of the air traffic in the U.S. National Airspace, and the ACES-Air MIDAS integration for human-in-the-loop analyzes within the NAS air traffic simulation.
X