Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Sound Quality Evaluation of a Brake and Clutch Pedal Assembly used for Automotive Applications

2017-01-10
2017-26-0194
Sound Quality (SQ) of brake and clutch pedal assembly plays an important role in contributing to vehicle interior noise and perception of sound. Quiet operation of brake and clutch units also reflects the vehicle built and material quality. Noise emitted from these sub-assemblies has to meet certain acceptance criteria as per different OEM requirements. Not much work has been carried on this over the years to characterize and quantify the same. An attempt has been made in this paper to study the sound quality of brake and clutch pedal assemblies at component level and validate the same by identifying the parameters affecting SQ. Effect on noise at different environmental conditions was studied with typical operating cycles in a hemi-anechoic chamber. The effect of sensor switches integrated within the clutch and brake pedal on sound quality is analyzed. It is found that the operating characteristics of switches drives the noise and SQ.
Technical Paper

The Application of the Simulation Techniques to Predict and Reduce the Interior Noise in Bus Development

2012-04-16
2012-01-0219
In order to reduce development time and costs, application of numerical prediction techniques has become common practice in the automotive industry. Among the wide range of simulation applications, prediction of the vehicle interior noise is still one of the most challenging ones. The Finite Element Method (FEM) is well known for acoustic predictions in the low-frequency range. As part of the development of a full sized bus model, noise levels at Driver Ear Levels (DEL) and Passenger Ear Levels (PEL) were targeted. The structural and acoustic analysis were performed for a bus to reduce interior noise in the low-frequency range. Various counter measures were identified and structural optimization/modifications were performed from virtual simulation to reduce the DEL and PEL. Structure-borne noise due to both road-induced vibration and engine vibration were considered by using FEM techniques.
Technical Paper

Sound Quality based Benchmarking Methodology for Vehicle Interior Noise

2013-11-27
2013-01-2853
Greater customer awareness is driving the automotive industry to constantly look to innovate and ensure that greater time, efforts and considerable resources are spent in developing a better vehicle. As we move away from noisy vehicles, the differentiating parameter in vehicles is the perception of quality in the vehicle noise or sound. As the masking effect due to overall vehicle noise level abates, many low noise sources gain prominence, which directly influences the perception of noise refinement. Hence, the concept of vehicle interior noise is not only limited to lower noise levels but has also extended to better sound quality (SQ). SQ technique involves use of relevant parameters for quantifying a subjective quality into an objective quantity. This paper will look at parameters relevant to subjective perception of vehicle interior noise and consider a benchmarking methodology targeting vehicle sound quality.
X