Refine Your Search

Topic

Author

Search Results

Technical Paper

Human Perception of Seat Vibration Quality Pilot Study

2021-08-31
2021-01-1068
Driving comfort and automotive product quality are strongly associated with the vibration that is transmitted to the occupants of a vehicle at the points of contact to the human body, including the seat, steering wheel, and pedals. Of these three contact locations, the seats have the most general importance, as all occupants of a vehicle experience seat vibration. Particularly relevant to driving comfort is the way in which vehicle occupants perceive seat vibration, which may be different than expected considering sensor measured vibration levels. Much of the interest in seat vibration has been focused on internal combustion engine powertrain vibration, especially idle vibration. However, electrification of vehicles changes the focus from low frequency idle vibration to higher frequency vibration sources.
Technical Paper

Autonomous Lane Change Control Using Proportional-Integral-Derivative Controller and Bicycle Model

2020-04-14
2020-01-0215
As advanced vehicle controls and autonomy become mainstream in the automotive industry, the need to employ traditional mathematical models and control strategies arises for the purpose of simulating autonomous vehicle handling maneuvers. This study focuses on lane change maneuvers for autonomous vehicles driving at low speeds. The lane change methodology uses PID (Proportional-Integral-Derivative) controller to command the steering wheel angle, based on the yaw motion and lateral displacement of the vehicle. The controller was developed and tested on a bicycle model of an electric vehicle (a Chevrolet Bolt 2017), with the implementation done in MATLAB/Simulink. This simple mathematical model was chosen in order to limit computational demands, while still being capable of simulating a smooth lane change maneuver under the direction of the car’s mission planning module at modest levels of lateral acceleration.
Technical Paper

Structural Analysis and Design Modification of Seat Rail Structures in Various Operating Conditions

2020-04-14
2020-01-1101
This paper is based on, and in continuation of the work previously published in ASEE NCS Conference held in Grand Rapids, MI [1]. Automotive seating rail structures are one of the key components in the automotive industry because they carry the entire weight of passenger and they hold the structure for seating foams and other assembled key components such as side airbag and seatbelt systems. The entire seating is supported firmly and attached to the bottom bodywork of the vehicle through the linkage assembly called the seat rails. Seat rails are adjustable in their longitudinal motion which plays an important role in giving the passengers enough leg room to make them feel comfortable. Therefore, seat rails under the various operating conditions, should be able to withstand the weight of the passenger along with the other assembled parts as mentioned above. Also, functional requirements such as crash safety is very important to avoid or to minimize injuries to the occupants.
Technical Paper

A Robust Failure Proof Driver Drowsiness Detection System Estimating Blink and Yawn

2020-04-14
2020-01-1030
The fatal automobile accidents can be attributed to fatigued and distracted driving by drivers. Driver Monitoring Systems alert the distracted drivers by raising alarms. Most of the image based driver drowsiness detection systems face the challenge of failure proof performance in real time applications. Failure in face detection and other important part (eyes, nose and mouth) detections in real time cause the system to skip detections of blinking and yawning in few frames. In this paper, a real time robust and failure proof driver drowsiness detection system is proposed. The proposed system deploys a set of detection systems to detect face, blinking and yawning sequentially. A robust Multi-Task Convolutional Neural Network (MTCNN) with the capability of face alignment is used for face detection. This system attained 97% recall in the real time driving dataset collected. The detected face is passed on to ensemble of regression trees to detect the 68 facial landmarks.
Journal Article

Lean Implementation in Integrated Design and Manufacturing

2013-04-08
2013-01-1329
Lean applications in product development usually start with manufacturing due to the relative experience of measuring improvements and identifying wastes in physical settings. The full potential of lean implementation in any product development, however, can only be realized when applied throughout the process, starting with early process. Considering that the first and most essential principle in lean implementation is the characterization of value from the customer's perspective, it is imperative that the proper definition of value is realized at the beginning of the process. In addition, streaming and flowing of this customer's specified value should be realized throughout the process from start to finish. This paper discusses the application of lean principles to integrated design and manufacturing phases of the Product Development Process.
Journal Article

A New Approach for Very Low Particulate Mass Emissions Measurement

2013-04-08
2013-01-1557
Pending reductions in light duty vehicle PM emissions standards from 10 to 3 mg/mi and below will push the limits of the gravimetric measurement method. At these levels the PM mass collected approaches the mass of non-particle gaseous species that adsorb onto the filter from exhaust and ambient air. This introduces an intrinsic lower limit to filter based measurement that is independent of improvements achieved in weighing metrology. The statistical variability of back-up filter measurements at these levels makes them an ineffective means for correcting the adsorption artifact. The proposed subtraction of a facility based estimate of the artifact will partially alleviate the mass bias from adsorption, but its impact on weighing variability remains a problem that can reach a significant fraction of the upcoming 3 and future 1 mg/mi standards. This paper proposes an improved PM mass method that combines the gravimetric filter approach with real time aerosol measurement.
Technical Paper

Automated 3D Printer Bed Clearing Mechanism

2020-04-14
2020-01-1301
The objective of this work was to design an automated bed clearing mechanism for the Anet brand A8 3D printer, which uses Fused Deposition Modeling (FDM) process. This work has been carried out as a capstone course. Many OEMs are focusing on using functional 3D printed parts to replace metal parts that otherwise require complex assemblies or to reduce weight. The concept behind the work presented in this paper was to allow every user to be able to print multiple parts without human interaction. This saves time to load and unload one part at a time. The idea was to develop a universal bed clearing mechanism that can be used for most brands of 3D printers. Upon researching into the many different styles and designs of printers, it became clear that the designs are different and complex to create a universal product. It was decided to aim for the most common style of 3D printers for which easy modeling and testing should be possible.
Technical Paper

Characterization of a Catalytic Converter Internal Flow

2007-10-29
2007-01-4024
This paper includes a numerical and experimental study of fluid flow in automotive catalytic converters. The numerical work involves using computational fluid dynamics (CFD) to perform three-dimensional calculations of turbulent flow in an inlet pipe, inlet cone, catalyst substrate (porous medium), outlet cone, and outlet pipe. The experimental work includes using hot-wire anemometry to measure the velocity profile at the outlet of the catalyst substrate, and pressure drop measurements across the system. Very often, the designer may have to resort to offset inlet and outlet cones, or angled inlet pipes due to space limitations. Hence, it is very difficult to achieve a good flow distribution at the inlet cross section of the catalyst substrate. Therefore, it is important to study the effect of the geometry of the catalytic converter on flow uniformity in the substrate.
Technical Paper

Characteristics of Trailer Rear Impact Guard - Interdependence of Guard Strength, Energy Absorption, Occupant Acceleration Forces and Passenger Compartment Intrusion

2008-04-14
2008-01-0155
FMVSS 223 and 224 set standards for “Rear Impact Protection” for trailers and semi-trailers with a gross weight rating greater than 10000 pounds. A limited amount of experimental data is available for evaluating the different performance attributes of rear impact guards. The crash tests are usually limited to fixed parameters such as impact speed, guard height, strength and energy absorption, etc. There also seems to be some misunderstanding of the interdependence of guard strength and energy absorption, and their combined effect on the guard's ability to limit underride while keeping occupant acceleration forces in a safe range. In this paper, we validated the Finite Element (FE) model of an existing rear impact guard against actual FMVSS 223 tests. We also modified a previously evaluated FE model of a 1990 Ford Taurus by updating its hood geometry and material properties.
Technical Paper

State Space Formulation by Bond Graph Models for Vehicle System Dynamics

2008-04-14
2008-01-0430
Modeling and simulation of dynamic systems is not always a simple task. In this paper, the mathematical model of a 4 Degree Of Freedom (DOF) ride model is presented using a bond-graph technique with state energy variables. We believe that for the physical model as described in this research, the use of a bond-graph approach is the only feasible solution. Any attempt to use classical methods such as Lagrange equations or Newton's second law, will create tremendous difficulties in the transformation of a set of second order linear differential equations to a set of first order differential equations without violating the existence and the uniqueness of the solution of the differential equations, the only approach is the elimination of the damping of the tires, which makes the model unrealistic. The bond-graph model is transformed to a mathematical model. Matlab is used for writing a computer script that solves the engineering problem.
Technical Paper

Effect of Head and Neck Anthropometry on the Normal Range of Motion of the Cervical Spine of Prepubescent Children

2009-06-09
2009-01-2302
Application of cervical spine range of motion data and related anthropometric measures of the head and neck include physical therapy, product design, and computational modeling. This study utilized the Cervical Range of Motion device (CROM) to define the normal range of motion of the cervical spine for subjects five (5) through ten (10) years of age. And, the data was collected and analyzed with respect to anatomical measures such as head circumference, face height, neck length, and neck circumference. This study correlates these static anthropometric measures to the kinematic measurement of head flexion, extension, lateral extension, and rotation.
Technical Paper

Considerations for Rollover Simulation

2004-03-08
2004-01-0328
Rollover crashes are responsible for a significant proportion of traffic fatalities each year, while they represent a relatively small proportion of all motor vehicle collisions. The purpose of this study was to focus on rollover events from an occupant's perspective to understand what type of industry test method, ATD, computer based model, and injury assessment measures are required to provide occupant protection during rollovers. Specific injuries most commonly experienced in rollovers along with the associated injury sources were obtained by review of 1998-2000 NASS-CDS records. These data suggest that models capable of predicting the likelihood of brain injuries, specifically subarachnoid and subdural hemorrhage, are desirable. Ideally, the model should also be capable of predicting the likelihood of rib fractures, lung contusions and shoulder (clavicular and scapular) fractures, and facet, pedicle, and vertebral body fractures in the cervical spine.
Technical Paper

Design and Development of a Cylindrical HVAC Case

2004-03-08
2004-01-1385
There are many opportunities in a current automotive HVAC case for improved performance, and cost savings. Based on these opportunities, a new HVAC case design has been developed. This new design is smaller and lighter than current cases while meeting many of the performance requirements. The case also features a unique plenum design for air distribution to the three modes, panel, floor, and defrost. The results of simulation and laboratory testing confirmed the concept of the new HVAC design.
Technical Paper

A Parametric Computationally - Based Study of Windshield Heat Transfer Subject to Impinging Airflow

2004-03-08
2004-01-1382
Impinging jets are an established technique for obtaining high local heat transfer coefficients between a fluid and a surface. Factors such as jet attachment, surface angle, jet angle, separation distance between jet orifice and surface of impingement, and trajectory influence heat transfer dramatically. In the current study, the specific application of interest is air issuing from the defroster's nozzles of a vehicle and impinging on a glass windshield. The current work is aimed at studying the flow patterns off a vehicle windshield as a result of air issuing from various nozzle configurations. The effects of openings' geometry (circular vs rectangular), number of openings, angle that the windshield makes with the horizontal plane and angle of impinging jet, on windshield heat transfer is examined. An optimal configuration will be recommended for better heat transfer.
Technical Paper

High Speed Measurement of Contact Pressure and Area during Knee-to-Instrument Panel Impact Events Suffered from Frontal Crashes

2001-03-05
2001-01-0174
Numerous human cadaver impact studies have shown that acute injury to the knee, femoral shaft, and hip may be significantly reduced by increasing the contact area over the anterior surface of the knee. Such impact events are common in frontal crashes when the knee strikes the instrument panel (IP). The cadaveric studies show that the injury threshold of the knee-thigh-hip complex increases as the contact area over the knee is likewise increased. Unfortunately, no prior methodology exists to record the spatial and temporal contact pressure distributions in dummy (or cadaver) experiments. Previous efforts have been limited to the use of pressure sensitive film, which only yields a cumulative record of contact. These studies assumed that the cumulative pressure sensitive film image correlated with the peak load, although this has never been validated.
Technical Paper

Effect of Chassis Design Factors (CDF) on the Ride Quality Using a Seven Degree of Freedom Vehicle Model

2004-03-08
2004-01-1555
The kinematics and kinetics of a seven degree of freedom vehicle ride model with independent front and rear suspension are developed. Lagrange's equation is used to obtain the mathematical model of the vehicle. The equations of motion are transformed to state space equations in Linear Time Invariant (LTI) form. The effect of Chassis Design Factors (CDF) such as stabilizer bars, stiffness', Dynamic Index in Pitch (DIP) and mass ratio on the vehicle ride quality are investigated. The ride quality of the 3 dimensional vehicle that includes bounce, pitch, roll and unsprung masses motion is demonstrated in time domain response. The vehicle is considered as a Multi-Input-Multi-Output System (MIMO) subjected to deterministic ground inputs. Outputs of interest for the ride quality investigation are vertical and angular displacement and vertical accelerations. Numerical computer simulation analysis is performed using MATLAB® software.
Technical Paper

External Flow Analysis Over a Car to Study The Influence of Different Body Profiles Using CFD

2001-10-16
2001-01-3085
A vehicle’s performance and fuel economy plays an important role in obtaining a larger market share in the segment. This can be best achieved by optimizing the aerodynamics of the vehicle. Aerodynamics can be improved by altering the bodylines on a vehicle. Its drag coefficient can be maintained at a minimum value by properly designing various component profiles. The stability of a vehicle and Passenger comfort are affected by wind noise that is related to the aerodynamics of a vehicle. To study the effects of the above-mentioned parameters, the vehicle is tested inside a wind tunnel. In this paper, the authors study the body profile for different vehicles and analyze them using Computational Fluid Dynamics software - FLUENT. To study the influence of different body profiles on drag coefficient, 3 different vehicle segments are considered.
Technical Paper

Application of Bond Graph Technique and Computer Simulation to the Design of Passenger Car Steering System

2002-03-04
2002-01-0617
Vehicle Dynamics play an important role in responsiveness of a vehicle. The performance of a vehicle depends on its ride and handling characteristics [1]. Handling is a measure of the directional response of a vehicle and one of the important characteristics from the vehicle dynamics point of view. The directional response of a vehicle depends on the dynamics of the steering system. A good steering control provides an accurate feedback about how the vehicle reacts to the road. In this paper, the powerful techniques of Bond graphs and state equations [2] are used to design and analyze the dynamics of a manual rack and pinion steering system. The author obtains the transfer function between the Angle of rotation of front tire and the Angle of rotation of steering wheel. The overall steering ratio of the bond graph modeled steering system is compared with the overall ratio of a similar vehicle to validate the model.
Technical Paper

Analysis of a 4-DOF Vehicle Model Using Bond Graph and Lagrangian Technique

2002-03-04
2002-01-0809
Bond graph modeling is a powerful technique to study the complex interactions occurring between various components in a system. A few investigations were carried out to study vehicle dynamics using Bondgraphs, but are limited to 2 degree of freedom systems [1,2&3]. In this work, a 4-DOF-vehicle model was developed using bond graphs. A frequency response analysis was also carried out to study the natural frequencies. This model was later validated using Lagrangian principles. The results correlated well for a typical passenger car using the manufacturer supplied information available in the public domain.
Technical Paper

Modeling the Response of an Automotive Event-Based Architecture: A Case Study

2003-03-03
2003-01-1199
While many current vehicle network systems for body bus applications use event triggered analysis processes, the deterministic point of view raises concerns about system timing due to message latency. This paper studies the latency performance characteristics of a typical body bus vehicle network using event triggered analysis over the CAN bus.
X