Refine Your Search

Topic

Author

Search Results

Journal Article

Combined Fluid Loop Thermal Management for Electric Drive Vehicle Range Improvement

2015-04-14
2015-01-1709
Electric drive vehicles (EDVs) have complex thermal management requirements not present in conventional vehicles. In addition to cabin conditioning, the energy storage system (ESS) and power electronics and electric motor (PEEM) subsystems also require thermal management. Many current-generation EDVs utilize separate cooling systems, adding both weight and volume, and lack abundant waste heat from an engine for cabin heating. Some use battery energy to heat the cabin via electrical resistance heating, which can result in vehicle range reductions of 50% under cold ambient conditions. These thermal challenges present an opportunity for integrated vehicle thermal management technologies that reduce weight and volume and increase cabin heating efficiency. Bench testing was conducted to evaluate a combined fluid loop technology that unifies the cabin air-conditioning and heating, ESS thermal management, and PEEM cooling into a single liquid coolant-based system.
Journal Article

A Second Life for Electric Vehicle Batteries: Answering Questions on Battery Degradation and Value

2015-04-14
2015-01-1306
Battery second use-putting used plug-in electric vehicle (PEV) batteries into secondary service following their automotive tenure-has been proposed as a means to decrease the cost of PEVs while providing low cost energy storage to other fields (e.g., electric utility markets). To understand the value of used automotive batteries, however, we must first answer several key questions related to battery degradation, including: How long will PEV batteries last in automotive service? How healthy will PEV batteries be when they leave automotive service? How long will retired PEV batteries last in second-use service? How well can we best predict the second-use lifetime of a used automotive battery? Under the support of the U.S. Department of Energy's Vehicle Technologies Office, the National Renewable Energy Laboratory has developed a methodology and the requisite tools to answer these questions, including the Battery Lifetime Simulation Tool (BLAST).
Journal Article

A New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

2013-04-08
2013-01-0850
Accurate evaluation of vehicles' transient total power requirement helps achieving further improvements in vehicle fuel efficiency. When operated, the air-conditioning (A/C) system is the largest auxiliary load on a vehicle, therefore accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation models, such as "Autonomie," have been used by OEMs to evaluate vehicles' energy performance. However, the load from the A/C system on the engine or on the energy storage system has not always been modeled in sufficient detail. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software MATLAB/Simulink® is frequently used by vehicle controls engineers to develop new and more efficient vehicle energy system controls.
Technical Paper

Platform Engineering Applied to Plug-In Hybrid Electric Vehicles

2007-04-16
2007-01-0292
Plug-in hybrid electric vehicle (PHEV) technology will provide substantial reduction in petroleum consumption as demonstrated in previous studies. Platform engineering steps including, reduced mass, improved engine efficiency, relaxed performance, improved aerodynamics and rolling resistance can impact both vehicle efficiency and design. Simulations have been completed to quantify the relative impacts of platform engineering on conventional, hybrid, and PHEV powertrain design, cost, and consumption. The application of platform engineering to PHEVs reduced energy storage system requirements by more than 12%, offering potential for more widespread use of PHEV technology in an energy battery supply-limited market. Results also suggest that platform engineering may be a more cost-effective way to reduce petroleum consumption than increasing the energy storage capacity of a PHEV.
Technical Paper

Energy Management Strategies for Plug-In Hybrid Electric Vehicles

2007-04-16
2007-01-0290
Plug-in hybrid electric vehicles (PHEVs) differ from hybrid vehicles (HEVs) with their ability to use off-board electricity generation to recharge their energy storage systems. In addition to possessing charge-sustaining HEV operation capability, PHEVs use the stored electrical energy during a charge-depleting operating period to displace a significant amount of petroleum consumption. The particular operating strategy employed during the charge-depleting mode will significantly influence the component attributes and the value of the PHEV technology. This paper summarizes three potential energy management strategies, and compares the implications of selecting one strategy over another in the context of the aggressiveness and distance of the duty cycle over which the vehicle will likely operate.
Technical Paper

Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use

2010-04-12
2010-01-0799
The air-conditioning (A/C) compressor load significantly impacts the fuel economy of conventional vehicles and the fuel use/range of plug-in hybrid electric vehicles (PHEV). A National Renewable Energy Laboratory (NREL) vehicle performance analysis shows the operation of the air conditioner reduces the charge depletion range of a 40-mile range PHEV from 18% to 30% in a worst case hot environment. Designing for air conditioning electrical loads impacts PHEV and electric vehicle (EV) energy storage system size and cost. While automobile manufacturers have climate control procedures to assess A/C performance, and the U.S. EPA has the SCO3 drive cycle to measure indirect A/C emissions, there is no automotive industry consensus on a vehicle level A/C fuel use test procedure. With increasing attention on A/C fuel use due to increased regulatory activities and the development of PHEVs and EVs, a test procedure is needed to accurately assess the impact of climate control loads.
Technical Paper

Technology Improvement Pathways to Cost-effective Vehicle Electrification

2010-04-12
2010-01-0824
Electrifying transportation can reduce or eliminate dependence on foreign fuels, emission of green house gases, and emission of pollutants. One challenge is finding a pathway for vehicles that gains wide market acceptance to achieve a meaningful benefit. This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective including opportunity charging, replacing the battery over the vehicle life, improving battery life, reducing battery cost, and providing electric power directly to the vehicle during a portion of its travel. Many combinations of PHEV electric range and battery power are included. For each case, the model accounts for battery cycle life and the national distribution of driving distances to size the battery optimally. Using the current estimates of battery life and cost, only the dynamically plugged-in pathway was cost-effective to the consumer.
Technical Paper

Water and Heat Balance in a Fuel Cell Vehicle with a Sodium Borohydride Hydrogen Fuel Processor

2003-06-23
2003-01-2271
The National Renewable Energy Laboratory (NREL) collaborated with Millennium Cell and DaimlerChrysler to study heat and water management in a sodium borohydride (NaBH4) storage/processor used to supply hydrogen to a fuel cell in an automotive application. Knowledge of heat and water flows in this system is necessary to maximize the storage concentration of NaBH4, which increases vehicle range. This work helps evaluate the NaBH4 system's potential to meet the FreedomCAR program technical target of 6 wt% hydrogen for hydrogen storage technologies. This paper also illustrates the advantages of integrating the NaBH4 hydrogen processor with the fuel cell.
Technical Paper

Full Vehicle Simulation for Series Hybrid Vehicles

2003-06-23
2003-01-2301
Delphi and the National Renewable Energy Laboratory (NREL) collaborated to develop a simulation code to model the mechanical and electrical architectures of a series hybrid vehicle simultaneously. This co-simulation code is part of the larger ADVISOR® product created by NREL and diverse partners. Simulation of the macro power flow in a series hybrid vehicle requires both the mechanical drivetrain and the entire electrical architecture. It is desirable to solve the electrical network equations in an environment designed to comprehend such a network and solve the equations in terms of current and voltage. The electrical architecture for the series hybrid vehicle has been modeled in Saber™ to achieve these goals. This electrical architecture includes not only the high-voltage battery, generator, and traction motor, but also the normal low-voltage bus (14V) with loads common to all vehicles.
Technical Paper

Adaptive Energy Management Strategy for Fuel Cell Hybrid Vehicles

2004-03-08
2004-01-1298
Fuel cell hybrid vehicles (FCHVs) use an energy management strategy to partition the power supplied by the fuel cell and energy storage system (ESS). This paper presents an adaptive energy management strategy, created in the ADVISOR™ software, for a series FCHV. The strategy uses a local or “real-time” optimization approach, which aims to reduce total energy consumption at each instantaneous time interval by dynamically adjusting the amount of power supplied by the fuel cell and ESS. Compared with a static control strategy, the adaptive strategy improved the simulated FCHV's fuel economy by 1.4%-8.5%, depending on the drive cycle.
Technical Paper

Degree of Hybridization Modeling of a Fuel Cell Hybrid Electric Sport Utility Vehicle

2001-03-05
2001-01-0236
An ADVISOR model of a large sport utility vehicle with a fuel cell / battery hybrid electric drivetrain is developed using validated component models. The vehicle mass, electric traction drive, and total net power available from fuel cells plus batteries are held fixed. Results are presented for a range of fuel cell size from zero (pure battery EV) up to a pure fuel cell vehicle (no battery storage). The fuel economy results show that some degree of hybridization is beneficial, and that there is a complex interaction between the drive cycle dynamics, component efficiencies, and the control strategy.
Technical Paper

Test Results and Modeling of the Honda Insight using ADVISOR

2001-08-20
2001-01-2537
The National Renewable Energy Laboratory (NREL) has conducted a series of chassis dynamometer and road tests on the 2000 model-year Honda Insight. This paper will focus on results from the testing, how the results have been applied to NREL's Advanced Vehicle Simulator (ADVISOR), and how test results compare to the model predictions and published data. The chassis dynamometer testing included the FTP-75 emissions certification test procedure, highway fuel economy test, US06 aggressive driving cycle conducted at 0°C, 20°C, and 40°C, and the SC03 test performed at 35°C with the air conditioning on and with the air conditioning off. Data collection included bag and continuously sampled emissions (for the chassis tests), engine and vehicle operating parameters, battery cell temperatures and voltages, motor and auxiliary currents, and cabin temperatures.
Technical Paper

Thermal Evaluation of Toyota Prius Battery Pack

2002-06-03
2002-01-1962
As part of a U.S. Department of Energy supported study, the National Renewable Energy Laboratory has benchmarked a Toyota Prius hybrid electric vehicle from three aspects: system analysis, auxiliary loads, and battery pack thermal performance. This paper focuses on the testing of the battery back out of the vehicle. More recent in-vehicle dynamometer tests have confirmed these out-of-vehicle tests. Our purpose was to understand how the batteries were packaged and performed from a thermal perspective. The Prius NiMH battery pack was tested at various temperatures (0°C, 25°C, and 40°C) and under driving cycles (HWFET, FTP, and US06). The airflow through the pack was also analyzed. Overall, we found that the U.S. Prius battery pack thermal management system incorporates interesting features and performs well under tested conditions.
Technical Paper

Energy Efficient Battery Heating in Cold Climates

2002-06-03
2002-01-1975
In cold climates batteries in electric and hybrid vehicles need to be preheated to achieve desired performance and life cycle of the energy storage system and the vehicle. Several approaches are available: internal core heating; external electric heating of a module; internal electric heating in the module around each cell, internal fluid heating around each cell; and external fluid heating around each module. To identify the most energy efficient approach, we built and analyzed several transient thermal finite element models of a typical battery. The thermal transient response of the battery core was computed for the first four heating techniques, which were compared based on the energy required to bring the battery to the desired temperature in a given time. Battery core heating was the most effective method to warm battery quickly with the least amount of energy. Heating the core by applying high frequency alternating currents through battery terminals is briefly discussed.
Technical Paper

A Modular Battery Management System for HEVs

2002-06-03
2002-01-1918
Proper electric and thermal management of an HEV battery pack, consisting of many modules of cells, is imperative. During operation, voltage and temperature differences in the modules/cells can lead to electrical imbalances from module to module and decrease pack performance by as much as 25%. An active battery management system (BMS) is a must to monitor, control, and balance the pack. The University of Toledo, with funding from the U.S. Department of Energy and in collaboration with DaimlerChrysler and the National Renewable Energy Laboratory has developed a modular battery management system for HEVs. This modular unit is a 2nd generation system, as compared to a previous 1st generation centralized system. This 2nd generation prototype can balance a battery pack based on cell-to-cell measurements and active equalization. The system was designed to work with several battery types, including lithium ion, NiMH, or lead acid.
Technical Paper

Degree of Hybridization Modeling of a Hydrogen Fuel Cell PNGV-Class Vehicle

2002-06-03
2002-01-1945
An ADVISOR model of a PNGV-class (80 mpg) vehicle with a fuel cell / battery hybrid electric drivetrain is developed using validated component models. The vehicle mass, electric traction drive, and total net power available from fuel cells plus batteries are held fixed. Results are presented for a range of fuel cell size from zero (pure battery EV) up to a pure fuel cell vehicle (no battery storage). The fuel economy results show that some degree of hybridization is beneficial, and that there is a complex interaction between the drive cycle dynamics, component efficiencies, and the control strategy.
Technical Paper

Life Balancing – A Better Way to Balance Large Batteries

2017-03-28
2017-01-1210
A new cell balancing technology was developed under a Department of Energy contract which merges the DC/DC converter function into cell balancing. Instead of conventional passive cell balancing technology which bypasses current through a resistor, or active cell balancing which moves current from one cell to another, with significant cost and additional inefficiencies, this concept takes variable amount of current from each cell or small group of cells and converts it to current for the low voltage system.
Technical Paper

Development of a Vehicle-Level Simulation Model for Evaluating the Trade-Off between Various Advanced On-Board Hydrogen Storage Technologies for Fuel Cell Vehicles

2012-04-16
2012-01-1227
One of the most critical elements in engineering a hydrogen fuel cell vehicle is the design of the on-board hydrogen storage system. Because the current compressed-gas hydrogen storage technology has several key challenges, including cost, volume and capacity, materials-based storage technologies are being evaluated as an alternative approach. These materials-based hydrogen storage technologies include metal hydrides, chemical hydrides, and adsorbent materials, all of which have drawbacks of their own. To optimize the engineering of storage systems based on these materials, it is critical to understand the impacts these systems will have on the overall vehicle system performance and what trade-offs between the hydrogen storage systems and the vehicle systems might exist that allow these alternative storage approaches to be viable.
Technical Paper

Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus

2011-04-12
2011-01-0863
Plug-in hybrid electric vehicle (PHEV) technology may reduce fuel consumption and tailpipe emissions in many medium- and heavy-duty vehicle vocations, including school buses. The true magnitude of these reductions is best assessed by comparative testing over relevant drive cycles. The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data, and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation PHEV school bus equipped with a 6.4 L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. For a baseline comparison, a Bluebird 7.2 L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity.
Technical Paper

Range Extension Opportunities While Heating a Battery Electric Vehicle

2018-04-03
2018-01-0066
The Kia Soul battery electric vehicle (BEV) is available with either a positive temperature coefficient (PTC) heater or an R134a heat pump (HP) with PTC heater combination [1]. The HP uses both ambient air and waste heat from the motor, inverter, and on-board-charger (OBC) for its heat source. Hanon Systems, Hyundai America Technical Center, Inc. (HATCI) and the National Renewable Energy Laboratory jointly, with financial support from the U.S. Department of Energy, developed and proved-out technologies that extend the driving range of a Kia Soul BEV while maintaining thermal comfort in cold climates. Improved system configuration concepts that use thermal storage and waste heat more effectively were developed and evaluated. Range extensions of 5%-22% at ambient temperatures ranging from 5 °C to −18 °C were demonstrated. This paper reviews the three-year effort, including test data of the baseline and modified vehicles, resulting range extension, and recommendations for future actions.
X