Refine Your Search

Topic

Search Results

Journal Article

A Re-Analysis Methodology for System RBDO Using a Trust Region Approach with Local Metamodels

2010-04-12
2010-01-0645
A simulation-based, system reliability-based design optimization (RBDO) method is presented that can handle problems with multiple failure regions and correlated random variables. Copulas are used to represent the correlation. The method uses a Probabilistic Re-Analysis (PRRA) approach in conjunction with a trust-region optimization approach and local metamodels covering each trust region. PRRA calculates very efficiently the system reliability of a design by performing a single Monte Carlo (MC) simulation per trust region. Although PRRA is based on MC simulation, it calculates “smooth” sensitivity derivatives, allowing therefore, the use of a gradient-based optimizer. The PRRA method is based on importance sampling. It provides accurate results, if the support of the sampling PDF contains the support of the joint PDF of the input random variables. The sequential, trust-region optimization approach satisfies this requirement.
Journal Article

Piston Design Using Multi-Objective Reliability-Based Design Optimization

2010-04-12
2010-01-0907
Piston design is a challenging engineering problem which involves complex physics and requires satisfying multiple performance objectives. Uncertainty in piston operating conditions and variability in piston design variables are inevitable and must be accounted for. The piston assembly can be a major source of engine mechanical friction and cold start noise, if not designed properly. In this paper, an analytical piston model is used in a deterministic and probabilistic (reliability-based) multi-objective design optimization process to obtain an optimal piston design. The model predicts piston performance in terms of scuffing, friction and noise, In order to keep the computational cost low, efficient and accurate metamodels of the piston performance metrics are used. The Pareto set of all optimal solutions is calculated allowing the designer to choose the “best” solution according to trade-offs among the multiple objectives.
Journal Article

A Comparative Benchmark Study of using Different Multi-Objective Optimization Algorithms for Restraint System Design

2014-04-01
2014-01-0564
Vehicle restraint system design is a difficult optimization problem to solve because (1) the nature of the problem is highly nonlinear, non-convex, noisy, and discontinuous; (2) there are large numbers of discrete and continuous design variables; (3) a design has to meet safety performance requirements for multiple crash modes simultaneously, hence there are a large number of design constraints. Based on the above knowledge of the problem, it is understandable why design of experiment (DOE) does not produce a high-percentage of feasible solutions, and it is difficult for response surface methods (RSM) to capture the true landscape of the problem. Furthermore, in order to keep the restraint system more robust, the complexity of restraint system content needs to be minimized in addition to minimizing the relative risk score to achieve New Car Assessment Program (NCAP) 5-star rating.
Journal Article

Enhancing Decision Topology Assessment in Engineering Design

2014-04-01
2014-01-0719
Implications of decision analysis (DA) on engineering design are important and well-documented. However, widespread adoption has not occurred. To that end, the authors recently proposed decision topologies (DT) as a visual method for representing decision situations and proved that they are entirely consistent with normative decision analysis. This paper addresses the practical issue of assessing the DTs of a designer using their responses. As in classical DA, this step is critical to encoding the DA's preferences so that further analysis and mathematical optimization can be performed on the correct set of preferences. We show how multi-attribute DTs can be directly assessed from DM responses. Furthermore, we show that preferences under uncertainty can be trivially incorporated and that topologies can be constructed using single attribute topologies similarly to multi-linear functions in utility analysis. This incremental construction simplifies the process of topology construction.
Journal Article

Uncertainty Assessment in Restraint System Optimization for Occupants of Tactical Vehicles

2016-04-05
2016-01-0316
We have recently obtained experimental data and used them to develop computational models to quantify occupant impact responses and injury risks for military vehicles during frontal crashes. The number of experimental tests and model runs are however, relatively small due to their high cost. While this is true across the auto industry, it is particularly critical for the Army and other government agencies operating under tight budget constraints. In this study we investigate through statistical simulations how the injury risk varies if a large number of experimental tests were conducted. We show that the injury risk distribution is skewed to the right implying that, although most physical tests result in a small injury risk, there are occasional physical tests for which the injury risk is extremely large. We compute the probabilities of such events and use them to identify optimum design conditions to minimize such probabilities.
Journal Article

A Variable-Size Local Domain Approach to Computer Model Validation in Design Optimization

2011-04-12
2011-01-0243
A common approach to the validation of simulation models focuses on validation throughout the entire design space. A more recent methodology validates designs as they are generated during a simulation-based optimization process. The latter method relies on validating the simulation model in a sequence of local domains. To improve its computational efficiency, this paper proposes an iterative process, where the size and shape of local domains at the current step are determined from a parametric bootstrap methodology involving maximum likelihood estimators of unknown model parameters from the previous step. Validation is carried out in the local domain at each step. The iterative process continues until the local domain does not change from iteration to iteration during the optimization process ensuring that a converged design optimum has been obtained.
Journal Article

Time-Dependent Reliability of Random Dynamic Systems Using Time-Series Modeling and Importance Sampling

2011-04-12
2011-01-0728
Reliability is an important engineering requirement for consistently delivering acceptable product performance through time. As time progresses, the product may fail due to time-dependent operating conditions and material properties, component degradation, etc. The reliability degradation with time may increase the lifecycle cost due to potential warranty costs, repairs and loss of market share. Reliability is the probability that the system will perform its intended function successfully for a specified time interval. In this work, we consider the first-passage reliability which accounts for the first time failure of non-repairable systems. Methods are available in the literature, which provide an upper bound to the true reliability which may overestimate the true value considerably. Monte-Carlo simulations are accurate but computationally expensive.
Journal Article

A Simulation and Optimization Methodology for Reliability of Vehicle Fleets

2011-04-12
2011-01-0725
Understanding reliability is critical in design, maintenance and durability analysis of engineering systems. A reliability simulation methodology is presented in this paper for vehicle fleets using limited data. The method can be used to estimate the reliability of non-repairable as well as repairable systems. It can optimally allocate, based on a target system reliability, individual component reliabilities using a multi-objective optimization algorithm. The algorithm establishes a Pareto front that can be used for optimal tradeoff between reliability and the associated cost. The method uses Monte Carlo simulation to estimate the system failure rate and reliability as a function of time. The probability density functions (PDF) of the time between failures for all components of the system are estimated using either limited data or a user-supplied MTBF (mean time between failures) and its coefficient of variation.
Journal Article

Optimal Preventive Maintenance Schedule Based on Lifecycle Cost and Time-Dependent Reliability

2012-04-16
2012-01-0070
Reliability is an important engineering requirement for consistently delivering acceptable product performance through time. It also affects the scheduling for preventive maintenance. Reliability usually degrades with time increasing therefore, the lifecycle cost due to more frequent failures which result in increased warranty costs, costly repairs and loss of market share. In a lifecycle cost based design, we must account for product quality and preventive maintenance using time-dependent reliability. Quality is a measure of our confidence that the product conforms to specifications as it leaves the factory. For a repairable system, preventive maintenance is scheduled to avoid failures, unnecessary production loss and safety violations. This article proposes a methodology to obtain the optimal scheduling for preventive maintenance using time-dependent reliability principles.
Journal Article

System Topology Identification with Limited Test Data

2012-04-16
2012-01-0064
In this article we present an approach to identify the system topology using simulation for reliability calculations. The system topology provides how all components in a system are functionally connected. Most reliability engineering literature assumes that either the system topology is known and therefore all failure modes can be deduced or if the system topology is not known we are only interested in identifying the dominant failure modes. The authors contend that we should try to extract as much information about the system topology from failure or success information of a system as possible. This will not only identify the dominant failure modes but will also provide an understanding of how the components are functionally connected, allowing for more complicated analyses, if needed. We use an evolutionary approach where system topologies are generated at random and then tested against failure or success data. The topologies evolve based on how consistent they are with test data.
Journal Article

A Nonparametric Bootstrap Approach to Variable-size Local-domain Design Optimization and Computer Model Validation

2012-04-16
2012-01-0226
Design optimization often relies on computational models, which are subjected to a validation process to ensure their accuracy. Because validation of computer models in the entire design space can be costly, a recent approach was proposed where design optimization and model validation were concurrently performed using a sequential approach with both fixed and variable-size local domains. The variable-size approach used parametric distributions such as Gaussian to quantify the variability in test data and model predictions, and a maximum likelihood estimation to calibrate the prediction model. Also, a parametric bootstrap method was used to size each local domain. In this article, we generalize the variable-size approach, by not assuming any distribution such as Gaussian. A nonparametric bootstrap methodology is instead used to size the local domains. We expect its generality to be useful in applications where distributional assumptions are difficult to verify, or not met at all.
Journal Article

Multi-Objective Decision Making under Uncertainty and Incomplete Knowledge of Designer Preferences

2011-04-12
2011-01-1080
Multi-attribute decision making and multi-objective optimization complement each other. Often, while making design decisions involving multiple attributes, a Pareto front is generated using a multi-objective optimizer. The end user then chooses the optimal design from the Pareto front based on his/her preferences. This seemingly simple methodology requires sufficient modification if uncertainty is present. We explore two kinds of uncertainties in this paper: uncertainty in the decision variables which we call inherent design problem (IDP) uncertainty and that in knowledge of the preferences of the decision maker which we refer to as preference assessment (PA) uncertainty. From a purely utility theory perspective a rational decision maker maximizes his or her expected multi attribute utility.
Journal Article

Warranty Forecasting of Repairable Systems for Different Production Patterns

2017-03-28
2017-01-0209
Warranty forecasting of repairable systems is very important for manufacturers of mass produced systems. It is desired to predict the Expected Number of Failures (ENF) after a censoring time using collected failure data before the censoring time. Moreover, systems may be produced with a defective component resulting in extensive warranty costs even after the defective component is detected and replaced with a new design. In this paper, we present a forecasting method to predict the ENF of a repairable system using observed data which is used to calibrate a Generalized Renewal Processes (GRP) model. Manufacturing of products may exhibit different production patterns with different failure statistics through time. For example, vehicles produced in different months may have different failure intensities because of supply chain differences or different skills of production workers, for example.
Technical Paper

Modeling Dependence and Assessing the Effect of Uncertainty in Dependence in Probabilistic Analysis and Decision Under Uncertainty

2010-04-12
2010-01-0697
A complete probabilistic model of uncertainty in probabilistic analysis and design problems is the joint probability distribution of the random variables. Often, it is impractical to estimate this joint probability distribution because the mechanism of the dependence of the variables is not completely understood. This paper proposes modeling dependence by using copulas and demonstrates their representational power. It also compares this representation with a Monte-Carlo simulation using dispersive sampling.
Technical Paper

Model-Based Embedded Controls Test and Verification

2010-04-12
2010-01-0487
Embedded systems continue to become more complex. As a result, more companies are utilizing model-based design (MBD) development methods and tools. The use of MBD methods and tools is helpful in increasing time to market and having instant feedback on the system design. One area that continues to mature is the testing and verification of the MBD systems. This paper introduces a hybrid approach to functional tests. The test system is composed of simulation software and real-time hardware. It is not always necessary to test a system in a real-time environment, but it is recommended if the goal is to deploy the system to a situation that requires real-time response. Vehicle drive cycles and powertrain control are utilized in this research as the example test case for this paper. In order to test the algorithms on a real-time system, it is necessary to understand the target controller's computing limitations and adjust the algorithms to meet these limitations.
Technical Paper

Analysis of Methods for Determining Sheared Edge Formability

2011-04-12
2011-01-1062
Imposing tensile stress on an edge of a sheet metal blank is a common condition in many sheet metal forming operations, making edge formability a very important factor to consider. Because edge formability varies greatly among different materials, cutting methods (and their control parameters), it is very important to have access to an experimental technique that would allow for quick and reliable evaluation of edge formability for a given case. In this paper, two existing techniques are compared: the hole expansion test and the tensile test. It is shown that the hole expansion test might not be adequate for many cases, and is prone to overestimating the limiting strain, because the burr on the sheared edge is typically smaller than what is observed in production. The tensile test represents an effective alternative to the hole expansion test. Advantages and disadvantages of each case are discussed.
Technical Paper

Modeling the Stiffness and Damping Properties of Styrene-Butadiene Rubber

2011-05-17
2011-01-1628
Styrene-Butadiene Rubber (SBR), a copolymer of butadiene and styrene, is widely used in the automotive industry due to its high durability and resistance to abrasion, oils and oxidation. Some of the common applications include tires, vibration isolators, and gaskets, among others. This paper characterizes the dynamic behavior of SBR and discusses the suitability of a visco-elastic model of elastomers, known as the Kelvin model, from a mathematical and physical point of view. An optimization algorithm is used to estimate the parameters of the Kelvin model. The resulting model was shown to produce reasonable approximations of measured dynamic stiffness. The model was also used to calculate the self heating of the elastomer due to energy dissipation by the viscous damping components in the model. Developing such a predictive capability is essential in understanding the dynamic behavior of elastomers considering that their dynamic stiffness can in general depend on temperature.
Technical Paper

Managing the Computational Cost in a Monte Carlo Simulation by Considering the Value of Information

2012-04-16
2012-01-0915
Monte Carlo simulation is a popular tool for reliability assessment because of its robustness and ease of implementation. A major concern with this method is its computational cost; standard Monte Carlo simulation requires quadrupling the number of replications for halving the standard deviation of the estimated failure probability. Efforts to increase efficiency focus on intelligent sampling procedures and methods for efficient calculation of the performance function of a system. This paper proposes a new method to manage cost that views design as a decision among alternatives with uncertain reliabilities. Information from a simulation has value only if it enables the designer to make a better choice among the alternative options. Consequently, the value of information from the simulation is equal to the gain from using this information to improve the decision. A designer can determine the number of replications that are worth performing by using the method.
Technical Paper

System Failure Identification using Linear Algebra: Application to Cost-Reliability Tradeoffs under Uncertain Preferences

2012-04-16
2012-01-0914
Reaching a system level reliability target is an inverse problem. Component level reliabilities are determined for a required system level reliability. Because this inverse problem does not have a unique solution, one approach is to tradeoff system reliability with cost and to allow the designer to select a design with a target system reliability, using his/her preferences. In this case, the component reliabilities are readily available from the calculation of the reliability-cost tradeoff. To arrive at the set of solutions to be traded off, one encounters two problems. First, the system reliability calculation is based on repeated system simulations where each system state, indicating which components work and which have failed, is tested to determine if it causes system failure, and second, the task of eliciting and encoding the decision maker's preferences is extremely difficult because of uncertainty in modeling the decision maker's preferences.
Technical Paper

Buckling of Structures Subject to Multiple Forces

2013-04-08
2013-01-1370
Frames are important structures found in many transportation applications such as automotive bodies and train cars. They are also widely employed in buildings, bridges, and other load bearing designs. When a frame is carrying multiple loads, it can potentially risk a catastrophic buckling failure. The loads on the frame may be non-proportional in that one force stays constant while the other is increased until buckling occurs. In this study the buckling problem is formulated as a constrained eigenvalue problem (CEVP). As opposed to other CEVP in which the eigenvectors are forced to comply with a number of the constraints, the eigenvalues in the current CEVP are subject to some equality constraints. A numerical algorithm for solving the constrained eigenvalue problem is presented. The algorithm is a simple trapping scheme in which the computation starts with an initial guess and a window containing the potential target for the eigenvalue is identified.
X