Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Development and Real-Time Implementation of Recurrent Neural Networks for AFR Prediction and Control

2008-04-14
2008-01-0993
The paper focuses on the experimental identification and validation of recurrent neural networks (RNN) for real-time prediction and control of air-fuel ratio (AFR) in spark-ignited engines. Suited training procedures and experimental tests are proposed to improve RNN precision and generalization in predicting both forward and inverse AFR dynamics for a wide range of operating scenarios. The reference engine has been tested by means of an integrated system of hardware and software tools for engine test automation and control strategies prototyping. The comparison between RNNs simulation and experimental trajectories showed the high accuracy and generalization capabilities guaranteed by RNNs in reproducing forward and inverse AFR dynamics. Then, a fast and easy-to-handle procedure was set-up to verify the potentialities of the inverse RNN to perform feed-forward control of AFR.
Technical Paper

Information Based Selection of Neural Networks Training Data for S.I. Engine Mapping

2001-03-05
2001-01-0561
The paper deals with the application of two techniques for the selection of the training data set used for the identification of Neural Network black-box engine models; the research starts from previous studies on Sequential Experimental Design for regression based engine models. The implemented methodologies rely on the Active Learning approach (i.e. active selection of training data) and are oriented to drive the experiments for the Neural Network training. The methods allow to select the most significant examples leading to an improvement of model generalization with respect to a heuristic choice of the training data. The data selection is performed making use of two different formulation, originally proposed by MacKay and Cohn, based on the Shannon's Statistic Entropy and on the Mean Error Variance respectively.
Technical Paper

A Methodology to Enhance Design and On-Board Application of Neural Network Models for Virtual Sensing of Nox Emissions in Automotive Diesel Engines

2013-09-08
2013-24-0138
The paper describes suited methodologies for developing Recurrent Neural Networks (RNN) aimed at estimating NOx emissions at the exhaust of automotive Diesel engines. The proposed methodologies particularly aim at meeting the conflicting needs of feasible on-board implementation of advanced virtual sensors, such as neural network, and satisfactory prediction accuracy. Suited identification procedures and experimental tests were developed to improve RNN precision and generalization in predicting engine NOx emissions during transient operation. NOx measurements were accomplished by a fast response analyzer on a production automotive Diesel engine at the test bench. Proper post-processing of available experiments was performed to provide the identification procedure with the most exhaustive information content. The comparison between experimental results and predicted NOx values on several engine transients, exhibits high level of accuracy.
Technical Paper

Experimental Validation of a Neural Network Based A/F Virtual Sensor for SI Engine Control

2006-04-03
2006-01-1351
The paper addresses the potentialities of Recurrent Neural Networks (RNN) for modeling and controlling Air-Fuel Ratio (AFR) excursions in Spark Ignited (SI) engines. Based on the indications provided by previous studies devoted to the definition of optimal training procedures, an RNN forward model has been identified and tested on a real system. The experiments have been conducted by altering the mapped injection time randomly, thus making the effect of fuel injection on AFR dynamics independent of the other operating variables, namely manifold pressure and engine speed. The reference engine has been tested by means of an integrated system of hardware and software tools for engine test automation and control strategies prototyping. The developed forward model has been used to generate a reference AFR signal to train another RNN model aimed at simulating the inverse AFR dynamics by evaluating the fuel injection time as function of AFR, manifold pressure and engine speed.
Technical Paper

A Computer Code for S.I. Engine Control and Powertrain Simulation

2000-03-06
2000-01-0938
A computer code oriented to S.I. engine control and powertrain simulation is presented. The model, developed in Matlab-Simulink® environment, predicts engine and driveline states, taking into account the dynamics of air and fuel flows into the intake manifold and the transient response of crankshaft, transmission gearing and vehicle. The model, derived from the code O.D.E.C.S. for the optimal design of engine control strategies now in use at Magneti Marelli, is suitable both for simulation analysis and to achieve optimal engine control strategies for minimum consumption with constraints on exhaust emissions and driveability via mathematical programming techniques. The model is structured as an object oriented modular framework and has been tested for simulating powertrain system and control performance with respect to any given transient and control strategy.
X