Refine Your Search

Topic

Search Results

Technical Paper

A Strategy for Developing an Inclusive Load Case for Verification of Squeak and Rattle Noises in the Car Cabin

2021-08-31
2021-01-1088
Squeak and rattle (S&R) are nonstationary annoying and unwanted noises in the car cabin that result in considerable warranty costs for car manufacturers. Introduction of cars with remarkably lower background noises and the recent emphasis on electrification and autonomous driving further stress the need for producing squeak- and rattle-free cars. Automotive manufacturers use several road disturbances for physical evaluation and verification of S&R. The excitation signals collected from these road profiles are also employed in subsystem shaker rigs and virtual simulations that are gradually replacing physical complete vehicle test and verification. Considering the need for a shorter lead time and the introduction of optimisation loops, it is necessary to have efficient and inclusive excitation load cases for robust S&R evaluation.
Journal Article

Simulation of Energy Used for Vehicle Interior Climate

2015-12-01
2015-01-9116
In recent years fuel consumption of passenger vehicles has received increasing attention by customers, the automotive industry, regulatory agencies and academia. However, some areas which affect the fuel consumption have received relatively small interest. One of these areas is the total energy used for vehicle interior climate which can have a large effect on real-world fuel consumption. Although there are several methods described in the literature for analyzing fuel consumption for parts of the climate control system, especially the Air-Condition (AC) system, the total fuel consumption including the vehicle interior climate has often been ignored, both in complete vehicle testing and simulation. The purpose of this research was to develop a model that predicts the total energy use for the vehicle interior climate. To predict the total energy use the model included sub models of the passenger compartment, the air-handling unit, the AC, the engine cooling system and the engine.
Technical Paper

An Investigation of the Coupling Between the Passenger Compartment and the Trunk in a Sedan

2007-05-15
2007-01-2356
The low frequency acoustic response of the passenger compartment (cavity) in sedans is considered with respect to the coupling between the cavity and the trunk. Both acoustic (via holes in the parcel shelf or behind the backrest of the rear seat), and structural (via the parcel shelf itself, or the panel of the backrest) mechanisms are investigated by both test and CAE. It is found that the peaks in acoustic response of the cavity at low frequencies are due to both acoustic and structural phenomena. However, the acoustic ones can be effectively blocked by proper design of the trim. Recommendations concerning modeling of acoustic effects in sedans are formulated.
Technical Paper

A Semiconductor Gas Sensor Array for the Detection of Gas Emissions from Interior Trim Materials in Automobiles

1998-02-23
980995
The principles of an electronic nose are described briefly. It is shown how a sensor array in combination with pattern recognition software can be used for quality control and classification of car interior trim materials. Anomalies such as bad smelling leather and carpet are shown as outliers. The results are consistent with GC-MS TVOC measurements as well as with data from a human sensory panel. More needs to be done, however, regarding the sensor stability in particular before the sensor array can be used for routine classification of the trim materials.
Technical Paper

Development of a Model Scale Heat Exchanger for Wind Tunnel Models of Road Vehicles

2008-04-14
2008-01-0097
During the development of the aerodynamic properties of fore coming road vehicles down scaled models are often used in the initial phase. However, if scale models are to be utilised even further in the aerodynamic development they have to include geometrical representatives of most of the components found in the real vehicle. As the cooling package is one of the biggest single generators of aerodynamic drag the heat exchangers are essential to include in a wind tunnel model. However, due mainly to limitations in manufacturing techniques it is complicated to make a down scaled heat exchanger and instead functional dummy heat exchangers have to be developed for scaled wind tunnel models. In this work a Computational Fluid Dynamics (CFD) code has been used to show that it is important that the simplified heat exchanger model has to be of comparable size to that of the full scale unit.
Technical Paper

PremAir® Catalyst System

1998-10-19
982728
Traditional approaches to pollution control have been to develop benign non-polluting processes or to abate emissions at the tailpipe or stack before emitting to the atmosphere. A new technology called PremAir®* Catalyst Systems takes a different approach and directly reduces ambient ground level ozone. This technology can be applied to both mobile and stationary applications. For automotive applications, the new system involves placing a catalytic coating on the car's radiator or air conditioner condenser. As air passes over the radiator or condenser, the catalyst converts the ozone into oxygen. Three Volvo vehicles with a catalyst coating on the radiator were tested on the road during the 1997 summer ozone season in southern California to assess performance. Studies were also conducted in Volvo's laboratory to determine the effect of the catalyst coating on the radiator's performance with regard to corrosion, heat transfer and pressure drop.
Technical Paper

Development and Validation of Coolant Temperature and Cooling Air Flow CFD Simulations at Volvo Cars

2004-03-08
2004-01-0051
This paper describes the development of a robust and accurate method to model one-phase heat exchangers in complete vehicle air flow simulations along with a comprehensive comparison of EFD and CFD results. The comparison shows that the inlet radiator coolant temperatures obtained with CFD were within ±4°C of the experimental data with a trend in the differences being dependent on the car speed. The relative differences in cooling air mass flow rates increase with increasing car speed, with CFD values generally higher than EFD. From the investigation, the conclusion is that the methodology and modeling technique presented offer an accurate tool for concept and system solutions on the front end design, cooling package and fan. Care must be taken in order to provide the best possible boundary conditions paying particular attention to the heat losses in the engine, performance data for the radiator and fan characteristics.
Technical Paper

Battery Parameter Estimation from Recorded Fleet Data

2016-10-17
2016-01-2360
Existing battery parameter model structures are evaluated by estimating model parameters on real driving data applying standard system identification methods. Models are then evaluated on the test data in terms of goodness of fit and RMSE in voltage predictions. This is different from previous battery model evaluations where a common approach is to train parameters using standardized tests, e.g. hybrid pulse-power capability (HPPC), with predetermined charge and discharge sequences. Equivalent linear circuit models of different complexity were tested and evaluated in order to identify parameter dependencies at different state of charge levels and temperatures. Models are then used to create voltage output given a current, state of charge and temperature. The average accuracy of modelling the DC bus voltage provides a model goodness of fit average higher than 90% for a single RC circuit model.
Technical Paper

Experimental Comparison of Heat Losses in Stepped-Bowl and Re-Entrant Combustion Chambers in a Light Duty Diesel Engine

2016-04-05
2016-01-0732
Heat loss is one of the greatest energy losses in engines. More than half of the heat is lost to cooling media and exhaust losses, and they thus dominate the internal combustion engine energy balance. Complex processes affect heat loss to the cylinder walls, including gas motion, spray-wall interaction and turbulence levels. The aim of this work was to experimentally compare the heat transfer characteristics of a stepped-bowl piston geometry to a conventional re-entrant diesel bowl studied previously and here used as the baseline geometry. The stepped-bowl geometry features a low surface-to-volume ratio compared to the baseline bowl, which is considered beneficial for low heat losses. Speed, load, injection pressure, swirl level, EGR rate and air/fuel ratio (λ) were varied in a multi-cylinder light duty engine operated in conventional diesel combustion (CDC) mode.
Technical Paper

Evaluating a Vehicle Climate Control System with a Passive Sensor Manikin coupled with a Thermal Comfort Model

2018-04-03
2018-01-0065
In a previous study, a passive sensor (HVAC) manikin coupled with a human thermal model was used to predict the thermal comfort of human test participants. The manikin was positioned among the test participants while they were collectively exposed to a mild transient heat up within a thermally asymmetric chamber. Ambient conditions were measured using the HVAC manikin’s distributed sensor system, which measures air velocity, air temperature, radiant heat flux, and relative humidity. These measurements were supplied as input to a human thermal model to predict thermophysiological response and subsequently thermal sensation and comfort. The model predictions were shown to accurately reproduce the group trends and the “time to comfort” at which a transition occurred from a state of thermal discomfort to comfort. In the current study, the effectiveness of using a coupled HVAC manikin-model system to evaluate a vehicle climate control system was investigated.
Technical Paper

Passenger AIR-BAG Status Indication Awareness Study

1997-02-24
970276
With the growing concern about the potential dangers with rear facing child seats placed in the front seat of passenger airbag equipped cars, various systems are being considered for deactivation of the airbag. To increase the awareness of and confidence in these proposed systems, information displays were developed for the purpose of telling the status of the passenger airbag system and to warn when necessary. A study of the effectiveness, understanding and acceptance of a selection of such information displays was jointly undertaken by Volvo Car Corporation, SAAB Automobile AB and the Swedish National Road and Transport Research Institute. Respondents of various age and demographic composition, parents and grand parents of small children, were exposed to six different sets of information displays and were asked to interpret them and also rank which information displays that would most clearly convey the message.
Technical Paper

Digital Human Models' Appearance Impact on Observers' Ergonomic Assessment

2005-06-14
2005-01-2722
The objective of this paper is to investigate whether different appearance modes of the digital human models (DHM or manikins) affect the observers when judging a working posture. A case where the manikin is manually assembling a battery in the boot with help of a lifting device is used in the experiment. 16 different pictures were created and presented for the subjects. All pictures have the same background, but include a unique posture and manikin appearance combination. Four postures and four manikin appearances were used. The subjects were asked to rank the pictures after ergonomic assessment based on posture of the manikin. Subjects taking part in the study were either manufacturing engineering managers, simulation engineers or ergonomists. Results show that the different appearance modes affect the ergonomic judgment. A more realistic looking manikin is rated higher than the very same posture visualized with a less natural appearance.
Technical Paper

Balancing Thermodynamic and Aerodynamic Attributes Through the Use of a Common CFD Model

2005-05-10
2005-01-2052
This paper describes how simultaneous numerical simulation of cooling performance and aerodynamic drag can be used to achieve attribute-balanced solutions. Traditionally at Volvo, evaluation of cooling performance and aerodynamics are done by separate teams using separate models and software. However, using this approach, any project changes can be evaluated in terms of their effect on cooling performance and drag from one single model. This enables the project to make decisions that are optimal in a more global perspective. If several proposals have similar levels of cooling performance, the proposal that yields the lowest overall drag can be chosen, thus reducing the fuel consumption of the vehicle. The first part of the paper discusses the prerequisites for the method in terms of boundary conditions, mesh and solution strategy. For the cooling performance part, the importance of high quality boundary conditions is reviewed.
Technical Paper

CFD-Analysis of Cycle Averaged Heat Flux and Engine Cooling in an IC-Engine

2005-04-11
2005-01-0200
It is demonstrated that the cycle averaged heat flux on the hot gas side of the cylinders can be obtained using in-cylinder CFD-analysis. Together with the heat transfer coefficient obtained from the coolant jacket CFD-analysis, a complete set of boundary conditions are made available exclusively based on simulations. The engine metal temperatures could then be predicted using FEA and the results are compared to an extensive set of measured data. Also 1-D codes are used to provide cooling circuit boundary conditions and gas exchange boundary condition for the CFD-models. The predicted temperature distribution in the engine is desirable for accurate and reliable prediction of knock, durability problems, bore distortion and valve seat distortion.
Technical Paper

Comparison Between CFD and PIV Measurements in a Passenger Compartment

2000-03-06
2000-01-0977
Numerical simulations of the flow inside a passenger compartment are compared with experimental data obtained from velocity field measurements using Particle Image Velocimetry (PIV). Comparisons are made in the front part of the passenger compartment with the air-distribution system operated in a ventilation mode. The sensitivty of the CFD-model to the boundary conditions was investigated and two different turbulence models were tested. Computations and experiments resulted in similar results for the overall flow field, however, rather large differences were found in the vertical spreading of the jet from the dashboard nozzle. The width of the jet was lower in the measurements than in the simulations. This difference is believed to be caused by the high diffusivity obtained when using a k-epsilon model in combination with an unstructured grid.
Technical Paper

Accuracy in Flow Simulations of Climate Control - Part 2: The Passenger Compartment

1999-03-01
1999-01-1201
Computational fluid dynamics has been used to study the flow pattern in a Volvo S80 passenger compartment. The main purpose of this work is to secure a method for future use of CFD in developing climate control systems in cars. The effects of mesh resolution and mesh size were studied by varying the number of cells from 1 million to approximately 5 million. It was found that at least 2 million cells are needed to approach a mesh size independent solution. The other focus of this study was the outlet boundary conditions. Since a passenger compartment is not air tight, outlets were assumed to be around doors, through the floor, through the backseat, as well as the evacuation at the rear of the passenger compartment. It can be seen that the solution is only sensitive to drastic changes in the leakage.
Technical Paper

Accuracy in Flow Simulations of Climate Control-Part 1: The Air Distribution System

1999-03-01
1999-01-1200
Flow simulations of an air distribution system have been carried out using the CFD code FLUENT/UNS [1]. The purpose of this study is to validate this complex flow problem versus experimental data. Two modes of the climate system are investigated; the Ventilation mode and the Floor/Defroster mode. The complete geometrical model contains all ducts, central unit, heat exchangers, defroster and nozzles of the air distribution system. A high level of geometrical detailing in the mesh, consisting of 2.1 - 3.3 million cells, is used. The study shows that CFD has a potential to give reliable results, even for complex systems, like air distribution systems, if used in a controlled manner.
Technical Paper

Reduction of Energy Used for Vehicle Interior Climate

2016-04-05
2016-01-0250
In recent years fuel consumption of passenger vehicles has received increasing attention by customers, the automotive industry, regulatory agencies and academia. However, some areas which affect the fuel consumption have received relatively small interest. One of these areas is the total energy used for vehicle interior climate which can have a large effect on real-world fuel consumption. Realistic combinations of energy saving measures were evaluated regarding the total energy use for vehicle interior climate using a one dimensional (1D) simulation model. The 1D simulation model included sub models of the passenger compartment, the air-handling unit, the Air Conditioning (AC) system, engine and engine cooling system. A test cycle representative for real-world conditions was developed. The test cycle included tests in cold, intermediate and warm conditions and the results were weighted with the estimated use in each condition.
Technical Paper

A High Resolution 3D Complete Engine Heat Balance Model

2015-09-06
2015-24-2533
The focus on engine thermal management is rapidly increasing due to the significant effect of heat losses on fuel consumption, engine performance and emissions. This work presents a time resolved, high resolution 3D engine heat balance model, including all relevant components. Notably, the model calculates the conjugated heat transfer between the solid engine components, the coolant and the oil. Both coolant and oil circuits are simultaneously resolved with a CFD solver in the same finite volume model as the entire engine solid parts. The model includes external convection and radiation. The necessary boundary conditions of the thermodynamic cycle (gas side) are mapped from a calibrated 1D gas exchange model of the same engine. The boundary conditions for the coolant and at the oil circuits are estimated with 1D models of the systems. The model is calibrated and verified with measurement data from the same engine as modeled.
Technical Paper

Strive for Zero Emissions Impact from Hybrids

2019-09-09
2019-24-0146
Since several decades, passenger cars and light duty vehicles (LDV) with spark-ignited engines reach full pollutant conversion during warm up conditions; the major challenge has been represented by the cold start and warming up strategies. The focus on technology developments of exhaust after treatment systems have been done in the thermal management in order to reach the warm up conditions as soon as possible. A new challenge is now represented by the Real Driving Emission (RDE) Regulation as this bring more various, and not any longer cycle defined, cold start conditions. On the other hand, once the full conversion has been reached, it would be beneficial for many Exhaust After Treatment System (EATS) components, e.g. for overall durability if the exhaust gas temperature could be lowered. To take significant further emission steps, approaching e.g. zero emission concepts, we investigate the use of Electrical Heating Catalyst (EHC) also including pre-heating.
X