Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Measures to Prevent Unauthorized Access to the In-Vehicle E/E System, Due to the Security Vulnerability of a Remote Diagnostic Tester

2017-03-28
2016-32-0018
Remote diagnostic systems support diagnostic communication by having the capability of sending diagnostic request services to a vehicle and receiving diagnostic response services from a vehicle. These diagnostic services are specified in diagnostic protocols, such as SAE J1979, SAE J1939 or ISO 14229 (UDS). For the purpose of diagnostic communication, the tester needs access to the electronic control units as communication partners. Physically, the diagnostic tester gets access to the entire vehicle´s E/E system, which consists of connectors, wiring, the in-vehicle network (e.g. CAN), the electronic control units, sensors, and actuators. Any connection of external test equipment and the E/E system of a vehicle poses a security vulnerability. The combination can be used for malicious intrusion and manipulation.
Journal Article

Review of Prior Studies of Fuel Effects on Vehicle Emissions

2009-04-20
2009-01-1181
A literature review was conducted to survey recent research on the effects of fuel properties on exhaust emissions from gasoline and diesel vehicles, on-road and off-road. Most of the literature has been published in SAE papers, although data have also been reported in other journals and government reports. A full report and database are available from the Coordinating Research Council (www.crcao.org). The review identified areas of agreement and disagreement in the literature and evaluated the adequacy of experimental design and analysis of results. Areas where additional research would be helpful in defining fuel effects are also identified. In many of the research programs carried out to evaluate the effect of new blendstocks, the fuel components were splash blended in fully formulated fuels. This approach makes it extremely difficult to determine the exact cause of the emissions benefit or debit.
Journal Article

Optimal Use of E85 in a Turbocharged Direct Injection Engine

2009-04-20
2009-01-1490
Ford Motor Company is introducing “EcoBoost” gasoline turbocharged direct injection (GTDI) engine technology in the 2010 Lincoln MKS. A logical enhancement of EcoBoost technology is the use of E85 for knock mitigation. The subject of this paper is the optimal use of E85 by using two fuel systems in the same EcoBoost engine: port fuel injection (PFI) of gasoline and direct injection (DI) of E85. Gasoline PFI is used for starting and light-medium load operation, while E85 DI is used only as required during high load operation to avoid knock. Direct injection of E85 (a commercially available blend of ∼85% ethanol and ∼15% gasoline) is extremely effective in suppressing knock, due to ethanol's high inherent octane and its high heat of vaporization, which results in substantial cooling of the charge. As a result, the compression ratio (CR) can be increased and higher boost levels can be used.
Journal Article

Modeling the Emissions Control Performance of a Catalyzed Diesel Particulate Filter (CDPF) System for Light Duty Diesel Applications

2009-04-20
2009-01-1266
The use of catalyzed diesel particulate filter (CDPF) systems in light duty diesel (LDD) vehicles is becoming increasingly common. The primary functions of the system are to remove carbon monoxide (CO) and hydrocarbons (HC) from the vehicle exhaust stream, while simultaneously reducing the level of particulate matter (PM) emissions to ambient background levels. These systems can comprise either a separate diesel oxidation catalyst (DOC) and a downstream CDPF, or a single unit CDPF with the DOC functions incorporated within the CDPF. The single CDPF unit provides higher regeneration efficiency as it is located nearer to the engine and also cost benefits, as only a single unit is required compared to the alternative separate DOC and CDPF arrangement. A model describing the performance of the single unit CDPF for emissions control has been developed, with particular emphasis on achieving predictions of the CO and HC emissions over transient vehicle drive cycles.
Journal Article

Empirical Modeling of Transient Emissions and Transient Response for Transient Optimization

2009-04-20
2009-01-1508
Empirical models for engine-out oxides of Nitrogen (NOx) and smoke emissions have been developed for the purpose of minimizing transient emissions while maintaining transient response. Three major issues have been addressed: data acquisition, data processing and modeling method. Real and virtual transient parameters have been identified for acquisition. Accounting for the phase shift between transient engine events and transient emission measurements has been shown to be very important to the quality of model predictions. Several methods have been employed to account for the transient transport delays and sensor lags which constitute the phase shift. Finally several different empirical modeling methods have been used to determine the most suitable modeling method for transient emissions. These modeling methods include several kinds of neural networks, global regression and localized regression.
Journal Article

Standardization of Graphics for Service Information and Translation Expense Reduction

2009-10-06
2009-01-2857
The cost of human natural language translation of Service Information, Assembly Instructions, Training Materials, Operator Manuals and other similar documents is a major expense for manufacturers. One translation avoidance method involves replacing most of a document’s text with still and/or animated graphics. While the graphics with minimum text concept has savings potential, clarity of communication must be maintained for widespread application of this technique. The necessary clarity should be achieved if standards are established for the symbols and graphical conventions used. This paper provides an example of a repair procedure documented using the graphics with minimum text paradigm, describes many of the anticipated standards and provides an update on the progress towards achieving a standard development project.
Journal Article

Brake Timing Measurements for a Tractor-Semitrailer Under Emergency Braking

2009-10-06
2009-01-2918
The timing and associated levels of braking between initial brake pedal application and actual maximum braking at the wheels for a tractor-semitrailer are important parameters in understanding vehicle performance and response. This paper presents detailed brake timing information obtained from full scale instrumented testing of a tractor-semitrailer under various conditions of load and speed. Brake timing at steer, drive and semitrailer brake positions is analyzed for each of the tested conditions. The study further seeks to compare the full scale test data to predicted response from detailed heavy truck computer vehicle dynamics simulation models available in commercial software packages in order to validate the model's brake timing parameters. The brake timing data was collected during several days of full scale instrumented testing of a tractor-semitrailer performed at the Transportation Research Center, in East Liberty, Ohio.
Journal Article

Consideration of Critical Cornering Control Characteristics via Driving Simulator that Imparts Full-range Drift Cornering Sensations

2009-10-06
2009-01-2922
A driving simulator capable of duplicating the critical sensations incurred during a spin, or when a driver is engaged in drift cornering, was constructed by Mitsubishi Heavy Industries, Ltd., and Hiromichi Nozaki of Kogakuin University. Specifically, the simulator allows independent movement along three degrees of freedom and is capable of exhibiting extreme yaw and lateral acceleration behaviors. Utilizing this simulator, the control characteristics of drift cornering have become better understood. For example, after a J-turn behavior experiment involving yaw angle velocity at the moment when the drivers attention transitions to resuming straight ahead driving, it is now understood that there are major changes in driver behavior in circumstances when simulator motions are turned off, when only lateral acceleration motion is applied, when only yaw motion is applied, and when combined motions (yaw + lateral acceleration) are applied.
Journal Article

Analysis of Behavior of Fuel Consumption and Exhaust Emissions under On-road Driving Conditions Using Real Car Simulation Bench (RC-S)

2009-09-13
2009-24-0139
The investigation of vehicle performances under on-road conditions has been required for emission reduction and energy saving in the real world. In this study, Real Car Simulation Bench (RC-S) was developed as an instrument for actual vehicle bench tests under on-road driving conditions, which could not be performed by using conventional chassis dynamometer (CH-DY). The experimental results obtained by RC-S were compared with the on-road driving data on the same car as used in RC-S tests. As a result, it was confirmed that RC-S could accurately reproduce the behavior of fuel consumption and exhaust emissions under on-road driving conditions.
Journal Article

Multi-Vehicle Evaluation of Gasoline Additive Packages: A Fourth Generation Protocol for the Assessment of Intake System Deposit Removal

2009-11-02
2009-01-2635
Building on two decades of expertise, a fourth generation fleet test protocol is presented for assessing the response of engine performance to gasoline additive treatment. In this case, the ability of additives to remove pre-existing deposit from the intake systems of port fuel injected vehicles has been examined. The protocol is capable of identifying real benefits under realistic market conditions, isolating fuel performance from other effects thereby allowing a direct comparison between different fuels. It is cost efficient and robust to unplanned incidents. The new protocol has been applied to the development of a candidate fuel additive package for the North American market. A vehicle fleet of 5 quadruplets (5 sets of 4 matched vehicles, each set of a different model) was tested twice, assessing the intake valve clean-up performance of 3 test fuels relative to a control fuel.
Journal Article

High Shear Rate Rheology of Lower Viscosity Engine Oils Over a Temperature Range of 80° to 150°C Using the Tapered Bearing Simulator (TBS) Viscometer

2010-10-25
2010-01-2288
In 2005, the growing emphasis on fuel efficiency coupled with the long-recognized negative effects of viscous friction caused by engine hydrodynamic lubrication, led to considerations of the benefits of lower viscosity engine oils by the SAE Engine Oil Viscosity Classification (EOVC) Task Force. More recently these considerations were given further impetus by OEM enquiry regarding modification of the SAE Viscosity Classification System to include oils of lower viscosity specification than that of SAE 20. For the EOVC Task Force, such considerations of commercially available, significantly lower viscosity engine oils, also produced a need to reassess the precision of high shear rate viscometry of such engine oils as presently practiced at 150°C - as well as interest in temperatures such as 100° and 120°C believed more representative of engine operating conditions.
Journal Article

A New Responsive Model for Educational Programs for Industry: The University of Detroit Mercy Advanced Electric Vehicle Graduate Certificate Program

2010-10-19
2010-01-2303
Today's automotive and electronics technologies are evolving so rapidly that educators and industry are both challenged to re-educate the technological workforce in the new area before they are replaced with yet another generation. In early November 2009 Ford's Product Development senior management formally approved a proposal by the University of Detroit Mercy to transform 125 of Ford's “IC Engine Automotive Engineers” into “Advanced Electric Vehicle Automotive Engineers.” Two months later, the first course of the Advanced Electric Vehicle Program began in Dearborn. UDM's response to Ford's needs (and those of other OEM's and suppliers) was not only at the rate of “academic light speed,” but it involved direct collaboration of Ford's electric vehicle leaders and subject matter experts and the UDM AEV Program faculty.
Journal Article

AUTOSAR as a Key Enabler for Collaborative Product Development

2010-10-19
2010-01-2341
Whether it be in highly visible features like fascinating new infotainment systems or hidden behind the scenes in complex new hybrid powertrain controls, in-vehicle software is rapidly changing the way the automotive industry engages its vehicle-buying customers. In every application where a compelling new electronic solution is emerging, it is enabled by the convergence of in-vehicle software developed by different collaborating partners. As more and more component suppliers, vehicle OEMs, and technology vendors enter into collaborative software development projects with each other, a new set of technical and business challenges are showing collaborative software development to be a very distinctive proposition than traditional stand-alone development.
Journal Article

Advances of Virtual Testing and Hybrid Simulation in Automotive Performance and Durability Evaluation

2011-04-12
2011-01-0029
Virtual testing is a method that simulates lab testing using multi-body dynamic analysis software. The main advantages of this approach include that the design can be evaluated before a prototype is available and virtual testing results can be easily validated by subsequent physical testing. The disadvantage is that accurate specimen models are sometimes hard to obtain since nonlinear components such as tires, bushings, dampers, and engine mounts are hard to model. Therefore, virtual testing accuracy varies significantly. The typical virtual rigs include tire and spindle coupled test rigs for full vehicle tests and multi-axis shaker tables for component tests. Hybrid simulation combines physical and virtual components, inputs and constraints to create a composite simulation system. Hybrid simulation enables the hard to model components to be tested in the lab.
Journal Article

Fracture Modeling of AHSS in Component Crush Tests

2011-04-12
2011-01-0001
Advanced High Strength Steels (AHSS) have been implemented in the automotive industry to balance the requirements for vehicle crash safety, emissions, and fuel economy. With lower ductility compared to conventional steels, the fracture behavior of AHSS components has to be considered in vehicle crash simulations to achieve a reliable crashworthiness prediction. Without considering the fracture behavior, component fracture cannot be predicted and subsequently the crash energy absorbed by the fractured component can be over-estimated. In full vehicle simulations, failure to predict component fracture sometimes leads to less predicted intrusion. In this paper, the feasibility of using computer simulations in predicting fracture during crash deformation is studied.
Journal Article

Multi-scale Theoretical Study of Sintering Dynamics of Pt for Automotive Catalyst

2009-11-02
2009-01-2821
The capability of theoretical durability studies to offer an efficient alternative methodology for predicting the potential performance of catalysts has improved in recent years. In this regard, multi-scale theoretical methods for predicting sintering behavior of Pt on various catalyst supports are being developed. Various types of Pt diffusions depending on support were confirmed by the micro-scale ultra accelerated quantum chemical molecular dynamics (UA-QCMD) method. Moreover, macro-scale sintering behavior of Pt/ɣ-Al2O3, Pt/ZrO2 and Pt/CeO2 catalyst were studied using a developed 3D sintering simulator. Experimental results were well reproduced. While Pt on ɣ-Al2O3 sintered significantly, Pt on ZrO2 sintered slightly and Pt on CeO2 demonstrated the highest stability against sintering.
Journal Article

Experimental and Numerical Evaluation of Diesel Spray Momentum Flux

2009-11-02
2009-01-2772
In the present work, an experimental and numerical analysis of high pressure Diesel spray evolution is carried out in terms of spray momentum flux time history and instantaneous injection rate. The final goal of spray momentum and of injection rate analyses is the evaluation of the nozzle outlet flow characteristics and of the nozzle internal geometry possible influences on cavitation phenomena, which are of primary importance for the spray evolution. Further, the evaluation of the flow characteristics at the nozzle exit is fundamental in order to obtain reliable boundary conditions for injection process 3D simulation. In this paper, spray momentum data obtained in ambient temperature, high counter-pressure conditions at the Perugia University Spray Laboratory are presented and compared with the results of 3D simulations of the momentum rig itself.
Journal Article

Construction and Use of Surrogate Models for the Dynamic Analysis of Multibody Systems

2010-04-12
2010-01-0032
This study outlines an approach for speeding up the simulation of the dynamic response of vehicle models that include hysteretic nonlinear tire components. The method proposed replaces the hysteretic nonlinear tire model with a surrogate model that emulates the dynamic response of the actual tire. The approach is demonstrated via a dynamic simulation of a quarter vehicle model. In the proposed methodology, training information generated with a reduced number of harmonic excitations is used to construct the tire hysteretic force emulator using a Neural Network (NN) element. The proposed approach has two stages: a learning stage, followed by an embedding of the learned model into the quarter car model. The learning related main challenge stems from the attempt to capture with the NN element the behavior of a hysteretic element whose response depends on its loading history.
Journal Article

Locally Austempered Ductile Iron (LADI)

2010-04-12
2010-01-0652
There are numerous component applications that would benefit from localized austempering (heat treating only a portion of the component) for either improved wear properties or fatigue strength. Currently available methods for “surface austempering” of ductile iron are often expensive and not as well controlled as would be desired. This study was undertaken to find a better process. Locally Austempered Ductile Iron (LADI) is the result of those efforts. LADI is a surface hardening heat treatment process that will produce a localized case depth of an ausferrite microstructure (ADI) in a desired area of a component. This process has been jointly developed by Ajax Tocco Magnethermic Corporation (ATM) and Applied Process, Inc.- Technologies Division (AP) with support and collaboration from ThyssenKrupp Waupaca, Inc. (TKW). This paper describes the outcome of using this patent pending process (US #65/195,131).
Journal Article

Lean NOx Trap Modeling for Vehicle Systems Simulations

2010-04-12
2010-01-0882
A transient, one-dimensional lean NOx trap (LNT) model is described and implemented for vehicle systems simulations. The model accounts for conservation of chemical species and thermal energy, and includes the effects of O₂ storage and NOx storage (in the form of nitrites and nitrates). Nitrites and nitrates are formed by diffusion of NO and NO₂, respectively, into sorbent particles, and reaction rates are controlled by chemical kinetics and solid-phase diffusion. The model also accounts for thermal aging and sulfation by means of empirical correlations, which have been derived from laboratory experiments. Example simulation results using the Powertrain Systems Analysis Toolkit (PSAT) are presented.
X