Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Brake Modulation

2014-04-01
2014-01-0079
A Location-Aware Adaptive Vehicle Dynamics System (LAAVDS) is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. An integral part of this System is an Intervention Strategy that uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. Through this strategy, the driver's commands are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority. Real-time implementation requires the development of computationally efficient predictive vehicle models. This work develops one means to alter the future vehicle states: modulating the driver's brake commands. This control strategy must be considered in relationship to changes in the throttle commands. Three key elements of this strategy are developed in this work.
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Throttle Modulation

2014-04-01
2014-01-0105
A Location-Aware Adaptive Vehicle Dynamics System (LAAVDS) is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. An Intervention Strategy uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. The driver's commands are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority. Real-time implementation requires the development of computationally efficient predictive vehicle models which is the focus of this work. This work develops one means to alter the future vehicle states: modulating the driver's throttle commands. First, changes to the longitudinal force are translated to changes in engine torque based on the current operating state (torque and speed) of the engine.
Journal Article

Control Strategy for the Excitation of a Complete Vehicle Test Rig with Terrain Constraints

2013-04-08
2013-01-0671
A unique concept for a multi-body test rig enabling the simulation of longitudinal, steering and vertical dynamics was developed at the Institute for Mechatronic Systems (IMS) at TU Darmstadt. A prototype of this IMS test rig is currently being built. In conjunction with the IMS test rig, the Vehicle Terrain Performance Laboratory (VTPL) at Virginia Tech further developed a full car, seven degree of freedom (7 DOF) simulation model capable of accurately reproducing measured displacement, pitch, and roll of the vehicle body due to terrain excitation. The results of the 7 DOF car model were used as the reference input to the multi-body IMS test rig model. The goal of the IMS/VTPL joint effort was to determine whether or not a controller for the IMS test rig vertical actuator could accurately reproduce wheel displacements due to different measured terrain constraints.
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Concept Development

2014-04-01
2014-01-0121
One seminal question that faces a vehicle's driver (either human or computer) is predicting the capability of the vehicle as it encounters upcoming terrain. A Location-Aware Adaptive Vehicle Dynamics (LAAVD) System is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. In contrast to current active safety systems, this system is predictive rather than reactive. This work provides the conceptual groundwork for the proposed system. The LAAVD System employs a predictor-corrector method in which the driver's input commands (throttle, brake, steering) and upcoming driving environment (terrain, traffic, weather) are predicted. An Intervention Strategy uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. The driver's throttle and brake control are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority.
Technical Paper

Electric Power Train Configurations with Appropriate Transmission Systems

2011-04-12
2011-01-0942
Referring to the transmission development, three different classifications of the power train are useful. These are the conventional power train with combustion-engined drive of the wheels, the electric power train with electromotive drive of the wheels and the hybrid power train with both types of drive. Due to this division, the micro hybrid belongs to the conventional power train while the serial hybrid is classified with the electric power train. Subdivisions of the electric power train are the decentralized drives near the axle shafts or the wheel hub drive and the central drive with differential. The choice of the electric motor is dependent on different influences such as the package, the costs or the application area. Furthermore the execution of the transmission system does influence the electric motor. Wheel hub drives are usually executed on wheel speed level or with single ratio transmission.
Technical Paper

Terrain Roughness Standards for Mobility and Ultra-Reliability Prediction

2003-03-03
2003-01-0218
The U.S. Army uses the root mean squared of elevation, or the RMSE standard for characterizing road/off-road roughness descriptions. This standard has often appeared in contracts as a performance requirement for the vehicle system. One important application of the standard is describing the testing environment for the vehicle. A physical test, which uses the standard, is the 30,000 mile endurance test. More recently, another metric has been used, the power spectral density (PSD) of road roughness. The international standard for road roughness is known as the International Roughness Index (IRI), and all road construction projects in the U.S. are based on this, as well as Department of Transportation analyses. This paper will analyze the different standards by comparing and contrasting the various aspects of each. Depending on the standard and metrics chosen, the simulation results will have different correlations with actual test.
Technical Paper

In Search of Efficient Walking Robots

2005-04-11
2005-01-0841
With the recent conflicts in Afghanistan and Iraq, it is increasingly evident that the demands of warfare are changing and the need for innovative mobility systems is growing. In the rough, unstructured terrain that the soldiers encounter, they have reverted to using mules and donkeys to move stealthily and quickly. In light of the growing need for autonomous systems, the Army is looking at the possibility of legged mobility options such as gasoline powered quadrupeds to traverse the off-road terrain. As technology advances, the era of military bipeds may well be in sight. However, current bipedal robotic technology is far too inefficient for battlefield use. Much of this inefficiency stems from actuated control of each limb's motion throughout the entire gait cycle. An alternative approach is to exploit the passive pendular dynamics of legs and legged bodies for energy savings. This paper compares and contrasts fully-actuated walking with passive walking.
Technical Paper

Case Study of the Evaluation and Verification of a PackBot Model in NRMM

2005-04-11
2005-01-0844
The NATO Reference Mobility Model (NRMM)[1] is the primary mobility software used by the US Department of Defense, its contractors and NATO countries to evaluate various metrics of proposed vehicle systems for acquisition. The NRMM is a vehicle mobility performance model developed in the 1970's[2] that combines mobility related technologies into one comprehensive software package designed to predict the physically constrained vehicle and terrain interaction while operating in both on and off road environments. The empirically based relationships within NRMM are measurements taken from actual vehicles run over a variety of terrains and are geared towards vehicles weighing more than 1500 pounds. As the Army focuses on a lighter, faster and more mobile fighting force, standard military vehicles are decreasing in size with many newultra lightweight autonomous systems being designed.
X