Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

A Computational Approach to Evaluate the Automotive Windscreen Wiper Placement Options Early in the Design Process

2013-05-13
2013-01-1933
For most car manufacturers, wind noise from the greenhouse region has become the dominant high frequency noise contributor at highway speeds. Addressing this wind noise issue using experimental procedures involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process. Previously, a computational approach that couples an unsteady computational fluid dynamics solver (based on a Lattice Boltzmann method) to a Statistical Energy Analysis (SEA) solver had been validated for predicting the noise contribution from the side mirrors. This paper presents the use of this computational approach to predict the vehicle interior noise from the windshield wipers, so that different wiper placement options can be evaluated early in the design process before the surface is frozen.
Journal Article

Simulation of Underbody Contribution of Wind Noise in a Passenger Automobile

2013-05-13
2013-01-1932
Wind noise is a significant source of interior noise in automobiles at cruising conditions, potentially creating dissatisfaction with vehicle quality. While wind noise contributions at higher frequencies usually originate with transmission through greenhouse panels and sealing, the contribution coming from the underbody area often dominates the interior noise spectrum at lower frequencies. Continued pressure to reduce fuel consumption in new designs is causing more emphasis on aerodynamic performance, to reduce drag by careful management of underbody airflow at cruise. Simulation of this airflow by Computational Fluid Dynamics (CFD) tools allows early optimization of underbody shapes before expensive hardware prototypes are feasible. By combining unsteady CFD-predicted loads on the underbody panels with a structural acoustic model of the vehicle, underbody wind noise transmission could be considered in the early design phases.
Journal Article

Investigation of Thermo-Acoustic Excitations in a Rijke Tube Geometry

2014-04-01
2014-01-1981
Flow generated acoustic sources are of significant import for automotive applications since perception of noise is a critical customer satisfaction issue. High temperature acoustic sources known as thermo-acoustics such as those occurring inside an exhaust system of a vehicle, an important subset of acoustic sources, is the subject of the investigation. In this article, we study a Rijke tube configuration that consists of a vertical and hollow cylindrical tube open at both ends where sound is generated by buoyancy driven flow as a result of a heated wire gauze placed in the bottom half of the tube. This configuration captures the essence of the thermo-acoustic phenomena and was investigated both numerically and experimentally and good agreement was observed between the two.
Journal Article

Exhaust and Muffler Aeroacoustics Predictions using Lattice Boltzmann Method

2015-06-15
2015-01-2314
Exhaust and muffler noise is a challenging problem in the transport industry. While the main purpose of the system is to reduce the intensity of the acoustic pulses originating from the engine exhaust valves, the back pressure induced by these systems must be kept to a minimum to guarantee maximum performance of the engine. Emitted noise levels have to ensure comfort of the passengers and must respect community noise regulations. In addition, the exhaust noise plays an important role in the brand image of vehicles, especially with sports car where it must be tuned to be “musical”. However, to achieve such performances, muffler and exhaust designs have become quite complex, often leading to the rise of undesired self-induced noise. Traditional purely acoustic solvers, like Boundary Element Methods (BEM), have been applied quite successfully to achieve the required acoustic tuning.
Journal Article

A Computational Approach to Assess Buffeting and Broadband Noise Generated by a Vehicle Sunroof

2015-04-14
2015-01-1532
Car manufacturers put large efforts into reducing wind noise to improve the comfort level of their cars. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof designs are tested to meet low-frequency buffeting (also known as boom) targets and broadband noise targets for the fully open sunroof with deflector and for the sunroof in vent position. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process.
Technical Paper

Acoustic Performance Analysis of Automotive HVAC Duct Designs Using a Lattice-Boltzmann Based Method and Correlation with Hemi-Anechoic Chamber

2020-04-14
2020-01-1263
Acoustic comfort of automotive cabins has progressively become one of the key attributes of passenger comfort within vehicle design. Wind noise and the heating, ventilation, and air conditioning (HVAC) system noise are two of the key contributors to noise levels heard inside the car. The increasing prevalence of hybrid technologies and electrification has an associated reduction in powertrain noise levels. As such, the industry has seen an increasing focus on understanding and minimizing HVAC noise, as it is a main source of noise in the cabin particularly when the vehicle is stationary. The complex turbulent flow path through the ducts, combined with acoustic resonances can potentially lead to significant noise generation, both broadband and tonal.
Technical Paper

A CFD/SEA Approach for Prediction of Vehicle Interior Noise due to Wind Noise

2009-05-19
2009-01-2203
For most car manufacturers, aerodynamic noise is becoming the dominant high frequency noise source (> 500 Hz) at highway speeds. Design optimization and early detection of issues related to aeroacoustics remain mainly an experimental art implying high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the development of a reliable numerical prediction capability. The goal of this paper is to present a computational approach developed to predict the greenhouse windnoise contribution to the interior noise heard by the vehicle passengers. This method is based on coupling an unsteady Computational Fluid Dynamics (CFD) solver for the windnoise excitation to a Statistical Energy Analysis (SEA) solver for the structural acoustic behavior.
Technical Paper

A Computational Approach to Evaluate the Vehicle Interior Noise from Greenhouse Wind Noise Sources

2010-04-12
2010-01-0285
For most car manufacturers, aerodynamic noise is becoming the dominant high frequency noise source (≻500 Hz) at highway speeds. Design optimization and early detection of issues related to aeroacoustics remain an experimental art implying high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the development of a reliable numerical prediction capability. This paper presents a computational approach that can be used to predict the vehicle interior noise from the greenhouse wind noise sources, during the early stages of the vehicle developmental process so that design changes can be made to improve the wind noise performance of the vehicle.
Technical Paper

Digital Aeroacoustics Design Method of Climate Systems for Improved Cabin Comfort

2017-06-05
2017-01-1787
Over the past decades, interior noise from wind noise or engine noise have been significantly reduced by leveraging improvements of both the overall vehicle design and of sound package. Consequently, noise sources originating from HVAC systems (Heat Ventilation and Air Conditioning), fans or exhaust systems are becoming more relevant for perceived quality and passenger comfort. This study focuses on HVAC systems and discusses a Flow-Induced Noise Detection Contributions (FIND Contributions) numerical method enabling the identification of the flow-induced noise sources inside and around HVAC systems. This methodology is based on the post-processing of unsteady flow results obtained using Lattice Boltzmann based Method (LBM) Computational Fluid Dynamics (CFD) simulations combined with LBM-simulated Acoustic Transfer Functions (ATF) between the position of the sources inside the system and the passenger’s ears.
Technical Paper

Hybrid Technique for Underbody Noise Transmission of Wind Noise

2011-05-17
2011-01-1700
Wind noise has become an important indicator for passenger automobile quality. Several transmission paths can be related to different parts of the vehicle exterior. While the greenhouse (side glasses, windshield, seals & others) often dominates the interior noise level above 500 Hz, the contribution coming from the underbody area usually dominates the interior noise spectrum at lower frequencies. This paper describes a framework of numerical tools which is capable of determining realistic underbody turbulent and acoustic loads being generated for typical driving conditions, as well as performing the noise transmission through underbody panels and the propagation of sound to the drivers ear location.
Technical Paper

Simulating HVAC Noise in Vehicle Cabin with Material Absorption Modelling

2022-03-29
2022-01-0302
Design of HVAC system plays an important role in acoustic comfort for passengers. With automotive world moving towards electrical vehicles where powertrain noise is low, designing low noise HVAC system is becoming more important. For an automobile manufacturer, ability to predict the production vehicle cabin noise at the early design stage is important as it allows more freedom for design changes, which can be incorporated in the vehicle at lower cost. Although HVAC prototype and system level testing at early design stage is possible for noise estimation but flow field is not visible in test that makes difficult to improve design. CFD simulation can provide detailed information on flow field, noise source strength and location. But in such a simulation, accurate prediction has been a challenge due to the inability of CFD tools to model acoustic absorptive characteristics of interior walls of cabin.
Technical Paper

Simulation Enabling Autonomous Vehicles to Better Hear Emergency Vehicles

2022-06-15
2022-01-0940
Autonomous vehicles need to be able to detect and react to the approach of emergency vehicles, such as fire trucks and ambulances. Exterior acoustic sensors may be deployed to “listen” for sirens of these emergency vehicles. Unfortunately, wind noise from turbulence at cruising conditions can greatly interfere with these exterior sensors. Early assessment of wind noise at alternative sensor locations enables engineers to make design changes to reduce that wind noise, either by choosing quieter sensor locations or by changing the source of interfering turbulence. A computational approach to evaluate the wind noise due to exterior shape at acoustic sensor locations is demonstrated in this paper. By comparing simulated spectra of wind noise at each proposed sensor location to that from a nearby siren signal, designers can rank sensor locations for acoustic detection in different frequency bands.
Technical Paper

Exhaust and Muffler Aeroacoustics Predictions using Lattice Boltzmann Method

2018-04-03
2018-01-1287
Exhaust systems are a necessary solution to reduce combustion engine noise originating from flow fluctuations released at each firing cycle. However, exhaust systems also generate a back pressure detrimental for the engine efficiency. This back pressure must be controlled to guarantee optimal operating conditions for the engine. To satisfy both optimal operating conditions and optimal noise levels, the internal design of exhaust systems has become complex, often leading to the emergence of undesired noise generated by turbulent flow circulating inside a muffler. Associated details needed for the manufacturing process, such as brackets for the connection between parts, can interact with the flow, generating additional flow noise or whistles. To minimize the risks of undesirable noise, multiple exhaust designs must be assessed early to prevent the late detection of issues, when design and manufacturing process are frozen. However, designing via an experimental approach is challenging.
Technical Paper

Computational Process for Wind Noise Evaluation of Rear-View Mirror Design in Cars

2014-04-01
2014-01-0619
A computational approach to evaluate rear-view mirror performance on wind noise in cars is presented in this paper. As a comfort metric at high speeds, wind noise needs to be addressed, for it dominates interior noise at mid-high frequencies. The impetus on rear-view mirror design arises from its crucial role in the flow field and the resulting pressure fluctuations on the greenhouse panels. The motivation to adopt a computational approach arises from the need to evaluate mirror designs early in vehicle design process and thus in conjunction with different vehicle shapes. The current study uses a Lattice Boltzmann method (LBM) based computational fluid dynamics(CFD) solver to predict the transient flow field and a statistical energy analysis(SEA) solver to predict interior noise contribution from the greenhouse panels. The accuracy of this computational procedure has been validated and published in the past.
Technical Paper

Mitigation of Community Noise from a Vacuum Excavator Using Simulations

2019-06-05
2019-01-1480
Off-highway equipment operates in residential communities and must meet their radiated noise targets to be compliant with noise regulations and to be competitive in the marketplace. Traditional find and fix noise testing of late-stage prototype designs may cause launch delays, with intense time pressures that often result in missed opportunities to create excellent products with good value. Accurate simulation of noise from these machines allows noise targets to be assessed at each stage of product development, giving engineers time to develop low noise products without adding excessive manufacturing cost. Simulation of an early prototype of a new vacuum excavator showed excessive levels of radiated noise in two different frequency ranges. Further investigation of the simulation results of these two spectrum ranges indicated different noise mechanisms producing the excessive noise levels.
Technical Paper

Towards a Quiet Vehicle Cabin Through Digitalization of HVAC Systems and Subsystems Aeroacoustics Testing and Design

2019-06-05
2019-01-1476
With the rise of electric autonomous vehicles, it has become clear that the cabin of tomorrow will drastically evolve to both improve ride experience and reduce energy consumption. In addition, autonomy will change the transportation paradigm, leading to a reinvention of the cabin seating layout which will offer the opportunity to climate systems team to design quiet and even more energy efficient systems. Consequently, Heat and Ventilation Air Conditioning (HVAC) systems designers have to deliver products which perform acoustically better than before, but often with less development time. To success under such constraints, designers need access to methods providing both assessment of the system (or subsystems) acoustic performance, and identification of where the designs need to be improved to reduce noise levels. Such methods are often needed before a physical prototype is requested, and thus can only be achieved in a timely manner through digital testing.
Journal Article

A Computational Process to Effectively Design Seals for Improved Wind Noise Performance

2019-06-05
2019-01-1472
The ability to assess noise transmitted through seals to cabin interiors early in the design process is very important for automotive manufacturers. When a seal design is inadequate, the noise transmitted can dominate the interior noise, making the wind noise performance of the vehicle unacceptable. This can cause launch delays, increasing costs and risking loss of sales. Designing seals using conventional experimental processes is challenging, since the location and strength of flow noise sources are not known when the seal design is planned. Making changes to the seal system after the tooling stage is expensive for manufacturers as tooling and redesign costs can be considerable. Deliberate overdesign by adding multiple layers of seals in a wide range of locations also can reduce profit by unnecessarily raising part and manufacturing costs.
Journal Article

Numerical Simulation of On-Road Wind Conditions for Interior Wind Noise of Passenger Vehicles

2023-05-08
2023-01-1124
Traditionally vehicles are designed for wind noise under ideal steady wind conditions. But, passenger comfort is affected by high modulation of cabin noise while cruising in traffic due to variations of instantaneous wind speed and direction from driving through large-scale turbulence. In consequence, designing a vehicle for the best performance in a low-turbulence wind tunnel may lead to issues during on-road conditions. To predict the interior noise corresponding to on-road turbulence, a simulation approach is proposed combining an upstream turbulence flow simulation with an SEA vehicle model. This work is an extension of existing well validated procedures for steady wind conditions. Time-segmented transient loads on panels and steady-state structural acoustics transfer functions are combined, producing interior noise results for a series of overlapping time segments.
X