Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Technology Breakthrough Achieves Objectives for SAE Preload Targets in Heavy Duty Wheel Ends

2009-10-06
2009-01-2887
Patents granted recently to Mr. Rode have changed the industry capability to adjust and verify wheel-end bearings on trucks. Until now it was believed1 that there was nothing available to confirm or verify the most desirable settings of preload on these bearings. The new, breakthrough invention is a tool and spindle-locking nut that permit quick and accurate wheel bearing adjustment by utilizing direct reading force measurement. Bearings can be set to either SAE recommended preloads or specific endplay settings. The author has been working on bearing adjustment methods for industrial applications for over forty years, and considers these inventions to be his most important breakthrough for solving this elusive bearing adjustment problem. Consistent wheel bearing preload adjustment was not possible before, even though it was widely known to achieve the best wheel performance as noted in SAE specification J2535 and re-affirmed in 2006 by the SAE Truck and Bus Wheel Subcommittee.
Journal Article

Systems to Silicon: A Complete System Approach to Power Semiconductor Selection for Environmentally Friendly Vehicles

2010-10-05
2010-01-1989
A complete system approach to power semiconductor analysis and selection is set forth in this paper. In order to address design overkill, a suitable power profile across the desired drive schedule is obtained through vehicle simulation in lieu of worse case operating conditions. The representative profile is then applied to detailed models of the inverter, power device, and power device thermal stack-up in order to predict worse case, silicon junction temperature rise. The simulation stream includes a closed silicon thermal loop that leads to more accurate power loss and junction temperature calculations. The models are combined and exercised in a single platform for ease of integration and fast simulation. Herein, the methods will be applied to a working example of an inverter for motor drives, and analytical results will be reviewed.
Journal Article

An Experimental Methodology for Measuring of Aerodynamic Resistances of Heavy Duty Vehicles in the Framework of European CO2 Emissions Monitoring Scheme

2014-04-01
2014-01-0595
Due to the diversity of Heavy Duty Vehicles (HDV), the European CO2 and fuel consumption monitoring methodology for HDVs will be based on a combination of component testing and vehicle simulation. In this context, one of the key input parameters that need to be accurately defined for achieving a representative and accurate fuel consumption simulation is the vehicle's aerodynamic drag. A highly repeatable, accurate and sensitive measurement methodology was needed, in order to capture small differences in the aerodynamic characteristics of different vehicle bodies. A measurement methodology is proposed which is based on constant speed measurements on a test track, the use of torque measurement systems and wind speed measurement. In order to support the development and evaluation of the proposed approach, a series of experiments were conducted on 2 different trucks, a Daimler 40 ton truck with a semi-trailer and a DAF 18 ton rigid truck.
Journal Article

Tire Traction of Commercial Vehicles on Icy Roads

2014-09-30
2014-01-2292
Safety and minimal transit time are vital during transportation of essential commodities and passengers, especially in winter conditions. Icy roads are the worst driving conditions with the least available friction, leaving valuable cargo and precious human lives at stake. The study investigates the available friction at the tire-ice interface due to changes in key operational parameters. Experimental analysis of tractive performance of tires on ice was carried out indoor, using the terramechanics rig located at the Advanced Vehicle Dynamics Laboratory (AVDL) at Virginia Tech. The friction-slip ratio curves obtained from indoor testing were inputted into TruckSIM, defining tire behavior for various ice scenarios and then simulating performance of trucks on ice. The shortcomings of simulations in considering the effects of all the operational parameters result in differences between findings of indoor testing and truck performance simulations.
Journal Article

Relative Performance Analyses of Independent Front Axle Suspensions for a Heavy-Duty Mining Truck

2014-09-30
2014-01-2320
A range of axle suspensions, comprising hydro-pneumatic struts and diverse linkage configurations, have evolved in recent years for large size mining trucks to achieve improved ride and higher operating speeds. This paper presents a comprehensive analysis of different independent front suspension linkages that have been implemented in various off-road vehicles, including a composite linkage (CL), a candle (CA), a trailing arm (TA), and a double Wishbone (DW) suspension applied to a 190 tons mining truck. Four different suspension linkages are modeled in MapleSim platform to evaluate their kinematic properties. The relative kinematic properties of the suspensions are evaluated in terms of variations in the kingpin inclination, caster, camber, toe-in and horizontal wheel center displacements considering the motion of a hydro-pneumatic strut. The results revealed the CL and DW suspensions yield superior kinematic response characteristics compared to the CA and TA suspensions.
Journal Article

Ride Optimization for a Heavy Commercial Vehicle

2014-04-01
2014-01-0843
The ride comfort of the commercial vehicle is mainly affected by several vibration isolation systems such as the primary suspension system, engine mounting system and the cab mounting system. A rigid-flexible coupling model for the truck was built and analyzed in multi-body environment (ADAMS). The method applying the excitation on the wheels center and the engine mountings in time domain was presented. The variables' effects on the ride performance were studied by design of experiment (DOE). The optimal design was obtained by the co-simulation of the ADAMS/View, iSIGHT and Matlab. It was found that the vertical root mean square (RMS) acceleration and frequency-weighted RMS acceleration on the seat track were reduced about 17% and 11% respectively at different speeds relative to baseline according to ISO 2631-1.
Journal Article

UniTire Model for Tire Forces and Moments under Combined Slip Conditions with Anisotropic Tire Slip Stiffness

2013-09-24
2013-01-2362
The tire mechanics characteristics are essential for analysis, simulation and control of vehicle dynamics. This paper develops the UniTire model for tire forces and moments under combined slip conditions with anisotropic tire slip stiffness. The anisotropy of tire slip stiffness, which means the difference of tire longitudinal slip stiffness and cornering stiffness, will cause that the direction of tire resultant shear stress in adhesion region is different from that in sliding region. Eventually the tire forces and moments under combined slip conditions will be influenced obviously. The author has proposed a “direction factor” before to modify the direction of resultant force in the tire-road contact patch, which can describe tire forces at cornering/braking combination accurately. However, the aligning moments which are very complicated under combined slip conditions are not considered in previous analysis.
Journal Article

Effect of Soil Deformability on Off-Road Vehicle Ride Dynamics

2013-09-24
2013-01-2383
This study analyzes the effect of soil deformation on ride dynamics of off-road vehicles using a quarter-vehicle model integrating different equivalent soil stiffness models. Soil deformation has an effect on the tire sinkage, wheels contact area and the wheels dynamic interaction with the terrain, which affects the overall ride dynamics of the vehicle. Apart from the very simplified equivalent soil stiffness model documented in the literature, a new equivalent soil stiffness model is developed in this study, which encompasses the effect of soil deformability on tire-soil contact area. Two measured ground roughness profiles are then used for vehicle ride dynamics simulation.
Journal Article

Performance Analysis of Active Independent Front Steering (AIFS) for Commercial Vehicles with Greater Lateral Load Shift Propensity

2013-09-24
2013-01-2355
An Active Independent Front Steering (AIFS) offers attractive potential for realizing improved directional control performance compared to the conventional Active Front Steering (AFS) system, particularly under more severe steering maneuvers. The AIFS control strategy adjusts the wheel steer angles in an independent manner so as to utilize the maximum available adhesion at each wheel/road contact and thereby compensate for cornering loss caused by the lateral load transfer. In this study, the performance potentials of AIFS are explored for vehicles experiencing greater lateral load transfers during steering maneuvers such as partly-filled tank trucks. A nonlinear yaw plane model of a two-axle truck with limited roll degree-of-freedom is developed to study the performance potentials of AIFS under different cargo fill conditions.
Journal Article

Load Estimation of an Open-Link Locomotion Module for Robotic and Commercial Multi-Wheel Applications

2013-09-24
2013-01-2358
An open-link locomotion module, comprising a driving wheel with an electric motor, a system of electro-hydraulic suspension, and an electro-hydraulic power steering system, is presented in this paper as the basis for the modular design of unmanned (robotic) ground vehicles. The open-link-type configuration allows the module to be functionally integrated and engineered with a system of similar modules and thus virtually allows to compile vehicles with any required number of driving wheels. The overall dimensions and carrying capacity of the tire used in the module, as well as technical characteristics of the suspension and power steering systems make possible to employ the module for commercial ground vehicle applications. This paper considers technical issues related to designing the locomotion module.
Journal Article

Recognition of Operating States of a Wheel Loader for Diagnostics Purposes

2013-09-24
2013-01-2409
In this paper, the operating states of a wheel loader were studied for diagnostics purposes using a real time simulation model of an articulated-frame-steered wheel loader. Test drives were carried out to obtain measurement data, which were then analyzed. The measured time series data were analyzed to find the sequences of operating states using two different data sets, namely the variables of hydrostatic transmission and working hydraulics. A time series is defined as a collection of observations made sequentially in time. In our proposed method, the time series data were first segmented to find operating states. One or more segments build up an operating state. A state is defined as a combination of the patterns of the selected variables. The segments were then clustered and classified. The operating states were further analyzed using the quantization error method to detect anomalies.
Journal Article

The Effects of Ground Simulation on Tractor-Trailer Combinations

2013-09-24
2013-01-2454
The 9-meter wind tunnel of the National Research Council (NRC) of Canada is equipped with a boundary layer suction system, center belt and wheel rollers to simulate ground motion relative to test articles. Although these systems were originally commissioned for testing of full-scale automotive models, they are appropriately sized for ground simulation with half-scale tractor-trailer combinations. The size of the tunnel presents an opportunity to test half-scale commercial vehicles at full-scale Reynolds numbers with a model that occupies 3% of the test section cross-sectional area. This study looks at the effects of ground simulation on the force and pressure data of a half-scale model with rotating tractor wheels. A series of model changes, typical of a drag reduction program, were undertaken and each configuration was tested with both a fixed floor and with full-ground simulation to evaluate the effects of this technology on the total and incremental drag coefficients.
Journal Article

Analysis of Vehicle Lateral Dynamics due to Variable Wind Gusts

2014-09-30
2014-01-2449
This study presents a practical theoretical method to judge the aerodynamic response of buses in the early design stage based on both aerodynamic and design parameters. A constant longitudinal velocity 2-DOF vehicle lateral dynamics model is used to investigate the lateral response of a bus under nine different wind gusts excitations. An appropriate 3-D CFD simulation model of the bus shape results is integrated with carefully chosen design parameters data of a real bus chassis and body to obtain vehicle lateral dynamic response to the prescribed excitations. Vehicle model validity is carried out then, the 2-DOF vehicle lateral dynamics model has been executed in MATLAB Simulink environment with the selected data. Simulation represents the vehicle in a straight ahead path then entered a gusting wind section of the track with a fixed steering wheel. Vehicle response includes lateral deviation (LD), lateral acceleration (LA), yaw angle (YA) and yaw rate (YR).
Journal Article

Electronic Differential Implementation in a Delta-Type Human Powered Tricycle

2014-10-01
2014-01-9028
The implementation of an electronic differential system in a delta-type, electrically assisted, three wheel Human Powered Vehicle is the subject of this paper. The electronic differential algorithm is based on the turning angle of the vehicle and its geometrical characteristics. The theoretical analysis is applied in a realistic human powered tricycle constructed in the premises of the Alexander Technological Educational Institute of Thessaloniki. The system's efficiency is validated through test measurements performed on the rear wheels during vehicle's operation in appropriately selected routes. The measurements are performed for both typical cornering and oversteering.
Technical Paper

Analytical Study on Influence of Shape of Bucket Cutting Edge of a Wheel Loader on Load Transfer

2021-09-22
2021-26-0136
Wheel loader is a heavy construction equipment, which is commonly used in construction, mining, transferring material etc. According to off highway research about Construction Equipment analysis in India, Wheel loader market is continuously growing because of road construction and mining [1]. One of the parameters which influences the productivity of the machine, is shape of the cutting edge of loader bucket. Poor design of bucket cutting edge results in poor digging, which ultimately affects machine performance and durability. In a wheel loader working cycle, the trajectory of the bucket structure is complicated and variable, which lead to complex working conditions. Cutting edge is the part of Wheel loader bucket, on which the OEMs put a lot of efforts in improving the penetration into the pile and performance. The maximum applied force on bucket cutting edges depend on working load conditions.
Technical Paper

Temperature Compensation Control Strategy of Assist Mode for Hydraulic Hub-Motor Drive Vehicle

2020-04-21
2020-01-5046
Based on the traditional heavy commercial vehicle, hydraulic hub-motor drive vehicle (HHMDV) is equipped with a hydraulic hub-motor auxiliary drive system, which makes the vehicle change from the rear-wheel drive to the four-wheel drive to improve the traction performance on low-adhesion road. In the typical operating mode of the vehicle, the leakage of the hydraulic system increases because of the oil temperature rising, this makes the control precision of the hydraulic system drop. Therefore, a temperature compensation control strategy for the assist mode is proposed in this paper. According to the principle of flow continuity, considering the loss of the system and the expected wheel speed, the control strategy of multifactor target pump displacement based on temperature compensation is derived. The control strategy is verified by the co-simulation platform of MATLAB/Simulink and AMESim.
Technical Paper

Influence of Asymmetrical Design Parameter on Vehicle Pull During Brake Application

2021-09-22
2021-26-0354
The steering system of commercial vehicle is asymmetrical to left side and rightside, this causes vehicle pull during braking application. This directly affects the safety of the driver and vehicle ride & handling performance. In a similar way, the asymmetrical suspension parameter unintentionally set during vehicle assembly arealso major contributors for creating a vehicle pull. After application of brake force, the tire contact patch creates a moment about the kingpin axis. However, this moment generated is different on left and right-side due to asymmetrical design parameters resulting in vehicle deviation from its intended path. A large deviation may lead to on road accidents. Some of the major factors which are responsible for the vehicle pulling phenomenon are the asymmetrical steering system compliance, asymmetrical suspension geometry, tire, braking system, road camber etc.
Journal Article

A Central Differential Gear Ratio Optimization of a 6×6 Articulated Dump Truck

2015-09-29
2015-01-2787
This paper starts with an analysis of design configurations of the drivelines with different power-dividing units (PDUs) of main dump truck manufacturing companies. As it follows from the analysis, improvements of articulated truck energy efficiency and reduction of fuel consumption by optimizing the power distribution to the drive wheels are still open issues. The problem is that a variety of operating and terrain conditions of dump trucks requires different wheel power distributions that cannot be provided by one set of PDUs employed in a truck. The central PDU in the transfer case was identified as the most important PDU among the five PDUs, which plays a crucial role in the power distribution between the front axle and the rear tandem of a 6×6 articulated dump truck. The paper formulates a constraint optimization problem to minimize the tire slippage power losses by optimizing the power distribution between the drive wheels.
Journal Article

Heavy-Duty Vehicle Fuel Saving Technology Analysis to Support Phase 2 Regulations

2015-09-29
2015-01-2775
This paper presents the fuel consumption results of engine and vehicle simulation modeling for a wide variety of individual technologies and technology packages applied to a long haul heavy duty vehicle. Based on the simulation modeling, up to 11% in fuel savings is possible using commercially available and emerging technologies applied to a 15L DD15 engine alone. The predicted fuel savings are up to 17% in a Kenworth T700 tractor-trailer unit equipped with a range of vehicle technologies, but using the baseline DD15 diesel engine. A combination of the most aggressive engine and vehicle technologies can provide savings of up to 29%, averaged over a range of drive cycles. Over 30% fuel savings were found with the most aggressive combination on a simulated long haul duty cycle. Note that not all of these technologies may prove to be cost-effective. The fuel savings benefits for individual technologies vary widely depending on the drive cycles and payload.
Journal Article

An Engine and Powertrain Mapping Approach for Simulation of Vehicle CO2 Emissions

2015-09-29
2015-01-2777
Simulations used to estimate carbon dioxide (CO2) emissions and fuel consumption of medium- and heavy-duty vehicles over prescribed drive cycles often employ engine fuel maps consisting of engine measurements at numerous steady-state operating conditions. However, simulating the engine in this way has limitations as engine controls become more complex, particularly when attempting to use steady-state measurements to represent transient operation. This paper explores an alternative approach to vehicle simulation that uses a “cycle average” engine map rather than a steady state engine fuel map. The map contains engine CO2 values measured on an engine dynamometer on cycles derived from vehicle drive cycles for a range of generic vehicles. A similar cycle average mapping approach is developed for a powertrain (engine and transmission) in order to show the specific CO2 improvements due to powertrain optimization that would not be recognized in other approaches.
X