Refine Your Search

Topic

Search Results

Training / Education

FAA/EASA Certification, Methods of Compliance for 29.865 External Loads

Certifying an aircraft, part or appliance can be challenge. The FAA/EASA procedures can be frustrating and a maze of rules, policy and guidance. Understanding the process and procedures can provide you with a competitive edge and reduce your time obtaining a Certification approval. This course provides an overview of the Federal Aviation Administration (FAA) and European Aviation Safety Agency (EASA) policies, guidelines and requirements leading to Type and Supplemental Type airworthiness approvals. This course has a focus on 29.865 External loads to include hoists, belly-mounted external structure and cargo hook loads.
Training / Education

FAA/EASA Certification, Methods of Compliance for 29.801 Ditching

Certifying an aircraft, part or appliance can be a challenge.  The FAA/EASA procedures can be frustrating and a maze of rules, policy and guidance. Understanding the process and procedures can provide you with a competitive edge and reduce your time obtaining a Certification approval. This course provides an overview of the Federal Aviation Administration (FAA) and European Aviation Safety Agency (EASA) policies, guidelines and requirements leading to Type and Supplemental Type airworthiness approvals. This course has a focus on 29.801 Ditching and EASA 29.802 Emergency Flotation.
Training / Education

Fluids for Aerospace Hydraulic Systems

This four-hour short course provides an introduction to fluids for aerospace hydraulic systems. Topics covered include an introduction to basics fluid properties, rheology, tribology, and fluid product development. In addition, the history and performance of different classes of fluids are discussed in detail, and specific failure modes such as erosion and sludge formation will be described. Along with an introduction to fluid degradation, information on used oil analysis test methods and interpretation will be provided.
Training / Education

Navigating Requirements for International Certification of Aviation Products

This course describes the basic elements of the process for achieving a successful aircraft certification globally once certification by the State of Design has been accomplished. The regulatory framework established under ICAO is presented with discussion of how major countries around the world comply with the ICAO Standards and Recommended Practices (SARPs). The uncertainty of how each country performs validation is a challenge. This course identifies common validation practices and key bilateral agreements which facilitate acceptance of aviation products from one country to another.
Training / Education

Introduction to Airframe Engineering Design for Manufacturing, Assembly and Automation

This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. Why is a design for manufacturing, assembly and automation so important? This introductory course on airframe engineering will cover the importance of design for manufacturing, assembly and automation in aerospace. It will review what the key drivers are for a “good” design and some of the key points for manufacturing and assembly of aircraft components. It will look at how an engineer can combine traditional technologies with new, cutting-edge technologies, to determine the best scenario for success.
Training / Education

DO-326A and ED-202A An Introduction to the New and Mandatory Aviation Cyber-Security Essentials

2024-07-29
This course will introduce participants to industry best practices for real-world aviation cyber-security risk-assessment, development & assurance. Participants will learn the information necessary to help minimize DO-326/ED-202-set compliance risks and costs, while also optimizing cyber-security levels for the development, deployment and in-service phases Topics such as aircraft security aspects of safety, systems-approach to security, security planning, the airworthiness security process, and security effectiveness assurance will be covered.
Training / Education

AS9145 Requirements for Advanced Product Quality Planning and Production Part Approval

2024-07-08
This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. Production and continual improvement of safe and reliable products is key in the aviation, space, and defense industries. Customer and regulatory requirements must not only be met, but they are typically expected to exceeded requirements. Due to globalization, the supply chain of this industry has been expanded to countries which were not part of it in the past and has complicated the achievement of requirements compliance and customer satisfaction.
Training / Education

AS13100 and RM13004 Design and Process Failure Mode and Effects Analysis and Control Plans

2024-07-03
This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. In the Aerospace Industry there is a focus on Defect Prevention to ensure that quality goals are met. Failure Mode and Effects Analysis (PFMEA) and Control Plan activities are recognized as being one of the most effective, on the journey to Zero Defects. This two-day course is designed to explain the core tools of Design Failure Mode and Effects Analysis (DFMEA), Process Flow Diagrams, Process Failure Mode and Effects Analysis (PFMEA) and Control Plans as described in AS13100 and RM13004.
Technical Paper

Comparison and Evaluation of Performance, Combustion and Particle Emissions of Diesel and Gasoline in a Military Heavy Duty 720 kW CIDI Engine Applying EGR

2020-09-15
2020-01-2057
Investigating the impact of Gasoline fuel on diesel engine performance and emission is very important for military heavy- duty combat vehicles. Gasoline has great potential as alternative fuel due to rapid depletion of petroleum reserves and stringent emission legislations, under multi fuel strategy program for military heavy- duty combat vehicle. There is a known torque, horsepower and fuel economy penalty associated with the operation of a diesel engine with Gasoline fuel. On the other hand, experimental studies have suggested that Gasoline fuel has the potential for lowering exhaust emissions, especially NOx, CO, CO2, HC and particulate matter as compared to diesel fuel. Recent emission legislations also restrict the total number of nano particles emitted in addition to particulate matter, which has adverse health impact.
Technical Paper

Methodology and Results of Testing an Impact of F-34 Fuel on the Engine Reliability

2020-09-15
2020-01-2133
An application of the new kind of the fuel for the diesel engine requires to conduct the qualification tests of the engines powered by this his fuel which allow assessing an impact of fuel on the engine reliability. Such a qualification test of the piston and turbine engines of the aircraft stationed on the ground and land vehicles is described in the NATO standardisation agreement (STANAG) 4195 as the AEP-5 test. The methodology and selected results of the qualification tests of the SW-680 turbocharged multi-purpose diesel engine fuelled with F-34 fuel have been presented in this paper. A dynamometric stand with the SW-680 engine has been described. Based on the preliminary results of the investigation it has been found that a change in a type of the fuel from IZ-40 diesel fuel into F-34 kerosene-type one has reduced a maximum engine torque by about 4%. This has been primarily due to a lower fuel density of F-34 by about 3%.
Standard

NATIONAL AEROSPACE AND DEFENSE CONTRACTORS ACCREDITATION PROGRAM REQUIREMENTS FOR NONCONVENTIONAL MACHINING

2002-02-01
HISTORICAL
AS7116
This Aerospace Standard (AS) establishes the requirements for suppliers of Nonconventional Machining Services to be accredited by the National Aerospace and Defense Contractors Accreditation Program (NADCAP). NADCAP accreditation is granted in accordance with SAE AS7003 after demonstration of compliance with the requirements herein. The requirements may be supplemented by additional requirements specified by the NADCAP Nonconventional Machining and Surface Enhancement (NMSE) Task Group. Using the corresponding Audit Criteria (PRI AC7116) will ensure that accredited Nonconventional Machining suppliers meet all of the requirements in this standard and all applicable supplementary standards. The purpose of this audit program is to assess a supplier's ability to consistently provide a product or service that conforms to the technical specifications and customer requirements.
Standard

Aerospace Ground Equipment Criteria for a Propellant Transfer Unit

1999-01-01
CURRENT
AIR1129
The primary purpose of a Propellant Transfer Unit (PTU) is to temperature-condition and weigh a specific amount of propellant, and transfer if to a vehicle propellant tank. A secondary purpose of a PTU may be to drain propellant from the vehicle tank and return it to the transfer unit when required. The transfer unit may also be used for flushing the vehicle fill lines and transfer unit with appropriate flushing fluids, followed with nitrogen for the purpose of drying the lines and weigh tank. The transfer unit may include provisions for helium purging of the propellant transfer tank and lines, ad supplying a blanket of helium pressure to the transfer tank. Each PTU consists of a piping system with appropriate propellant and pneumatic valves, regulators, relief valves, filters and a propellant pump. Various components such as a scrubber, bubbler, propellant cooler (heat exchanger), propellant weigh tank, weigh scale and a chiller may make up the balance of the assembly.
Training / Education

New Mechanical Shifting Devices in Automotive Transmissions Web Seminar RePlay

Anytime
The Controllable Mechanical DiodeTM (CMD) is a new technology that improves fuel economy, mass and packaging in modern automatic transmissions. In this 40-minute course, participants will gain an understanding of the base construction, function and value of the new Controllable Mechanical DiodeTM innovation. Advantages of its use in new automatic transmissions will be explained along with examples of the CMD’s alignment to electrified transmissions.
Technical Paper

Challenging Power Density Requirements for Future Fighter APUs

1991-09-01
912177
Future fighters will require more compact, lighter weight, small gas turbine auxiliary power units (APUs) capable of faster starting, and operation, up to altitudes of 50,000 ft. The US Air Force is currently supporting an Advanced Components Auxiliary Power Unit (ACAPU) research program to demonstrate the technologies that will be required to accomplish projected secondary power requirements for these advanced fighters. The requirements of the ACAPU Program represent a challenging task requiring significant technical advancements over the current state-of-the-art, prominent among which are: Small high heat release high altitude airbreathing combustors. High temperature monolithic ceramic and metallic small turbines. Capability to operate, and transition from non-airbreathing to airbreathing modes. This paper discusses these challenging requirements and establishes technology paths to match and exceed the required goals.
Technical Paper

Future Military APU Requirements

1991-09-01
912176
Future tactical aircraft will have increased capabilities that will place greater demands on their secondary power systems. Added capabilities such as low observability or internal weapons storage are being planned for without significantly increasing the aircraft's size and weight. The power system must therefore have reduced volume, weight, and complexity, while also being more reliable and maintainable. The auxiliary power unit (APU) is a critical component that must be improved to upgrade the capabilities of the power system. Increasing the APU's power density is one important way for reducing the power system's size and weight. Increased power density, however, will require a power unit operating with higher gas generator temperatures, so this condition will be the major challenge for new APU designs.
Technical Paper

Guiding Framework for Feasibility Evaluation of Localised Production and Drop in Blending of Aviation Turbine Fuel with Bio Derivatives for Non-civilian Air Bases

2011-10-18
2011-01-2792
The potential for small scale local production of Bio fuel derivatives and their partial blending with aviation turbine fuel in non-civilian bases has been investigated. A feasibility study on technical readiness levels for process viability is presented in the paper. Demand side analysis for various blend mixes and corresponding requirement for production facilities and land area requirements are performed. Sustainable production and blending operations are the basis for selection of key performance indicators for the air base. Guiding framework and readiness evaluation processes are delineated for the base. Qualitative inference is combined with quantitative scoring system within the framework.
X