Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

Research on Solar Thermal Energy Warming Diesel Engine Based on Reverse Heat Transfer of Coolant

2020-04-14
2020-01-1343
In winter, the temperature of the coldest month is below -20°C. Low temperature makes it difficult to start a diesel engine, combust sufficiently, which increases fuel consumption and pollutes the environment. The use of an electric power-driven auxiliary heating system increases the battery load and power consumption. Solar thermal energy has the advantages of easy access, clean and pollution-free. The coolant in the cylinder block of the diesel engine has a large contact area within the cylinder and is evenly distributed, which can be used as a heat transfer medium for the warm-up. A one-dimensional heat transfer model of the diesel engine block for the coolant warm-up is developed, and the total heat required for the warm-up is calculated by an iterative method in combination with the warm-up target.
Technical Paper

Parameter Optimization of Two-Speed AMT Electric Vehicle Transmission System

2020-04-14
2020-01-0435
At present, many electric vehicles are often equipped with only a single-stage final drive. Although the single-stage speed ratio can meet the general driving requirements of electric vehicles, if the requirements of the maximum speed and the requirements for starting acceleration or climbing are met at the same time, the power demand of the drive motor is relatively large, and the efficient area of the drive motor may be far away from the operating area corresponding to daily driving. If the two-speed automatic transmission is adopted, the vehicle can meet the requirements of maximum speed, starting acceleration and climbing at the same time, reduce the power demand of the driving motor, and improve the economy under certain power performance. This is especially important for medium and large vehicles.
Technical Paper

Research on the Performance of Battery Thermal Management System Based on Optimized Arrangement of Flat Plate Heat Pipes

2020-04-14
2020-01-0162
The thermal management system is essential for the safe and long-term operation of the power battery. The temperature difference between the individual cells exceeds the acceleration of the battery performance, which leads to battery out of use and affects the performance of the vehicle. Compared with the low heat transfer coefficient of the air-cooling system, the complex structure of the liquid-cooling system and the large quality of phase change material system, the heat pipe has high thermal conductivity, strong isothermal performance and light weight, it’s an efficient cooling element that can be used for thermal management. In this study, the flat plate heat pipe(FPHP) is used to manage the temperature of the battery, through experiments, the optimized placement of the flat heat pipe is obtained.
Technical Paper

The Research of the Heavy Truck’s Warming System

2017-10-08
2017-01-2221
It’s not easy to start the engine in winter, especially in frigid highlands, because the low temperature increases the fuel’s viscosity, decreasing the lubricating oil flow ability and the storage performance of battery. Current electrical heating method can improve the engine starting performance in low temperature condition, but this method adds an external power to the engine, leading to the engine cannot maintain an efficient energy utilization. A warming device using the solar energy is designed to conserve the energy during the daytime, and directly warm up the engine at the time when the engine turns off for a long time, especially during the night. A solar collector installed on the top of the vehicle is used to convert the solar energy to the thermal energy, which is then transferred to the heat accumulator that contain the phase-change medium which can increase the heat storage performance.
Technical Paper

Battery Thermal Management System Using Water as a Phase Change Material

2017-10-08
2017-01-2454
In these years, the advantages of using phase change material (PCM) in the thermal management of electric power battery has been wide spread. Because of the thermal conductivity of most phase change material (eg.wax) is low, many researchers choose to add high conductivity materials (such as black lead). However, the solid-liquid change material has large mass, poor flow-ability and corrosively. Therefore, it still stays on experiential stage. In this paper, the Thermal characteristics of power battery firstly be invested and the requirements of thermal management system also be discussed. Then a new PCM thermal management has been designed which uses pure water as liquid phase change material, adopts PCM with a reflux device for thermal management.
Technical Paper

Experiment Study and Design of Self-excited Eddy Current Retarder

2013-11-27
2013-01-2825
Good braking performance is an important guarantee for the vehicle driving. In the condition of frequent or prolonged braking, the overheating problem for the traditional mechanical braking device causes the recession of the braking performance, which is a prominent problem especially for the commercial vehicle perennial traveling in the mountains. Eddy current retarder can reduce the mechanical brake load as a kind of auxiliary braking device. Thus, the temperature of the mechanical braking device would not be too high, and the traveling safety of the vehicle can be ensured. But eddy current retarder would cause an enormous impact for automobile battery when it starts up and huge electricity energy would be consumed which means that more automotive batteries are needed. Considering above, a kind of self-excited eddy current retarder is developed in the paper.
Technical Paper

Research on the Dual-Motor Coupling Power System Strategy of Electric Sweeping Vehicle

2022-03-29
2022-01-0673
The sweeping vehicle has made a great contribution to the cleaning of urban roads. The traditional electric sweeping vehicle uses the main and auxiliary motors to drive the driving system and the operating system respectively. However, because the sweeper is in a low-speed working condition for a long time, and the drive motor must meet the demand for high power, there exist problems of low motor utilization and high cost. Aiming at this phenomenon, a dual-motor power coupling system based on planetary gears is proposed. First, analyze the driving mode of the dual-motor coupling power system according to the actual working scheme of the sweeper, and match the parameters of the motor based on this. Second, on the premise of meeting the power requirements, analyze and divide the working range of each drive mode based on the principle of minimum energy consumption, and then obtain the best drive mode switching control and speed and torque distribution strategy.
Technical Paper

Measurement and Evaluation of the Conversion of Thermal Energy Generated on the Contact Surface of the Brake Disc into Electrical Energy Using a Thermoelectric Generator

2022-03-29
2022-01-0188
Heat generated by friction between the brake discs and the brake pad causes the disc temperature to rise, which affects the braking performance. This flux generated from the contact surface of the vehicle brake disc not only affects the braking performance but also tends to be wasted and pollutes the environment. However, an accurate system is needed to make efficient use of this generated heat flux, which is usually wasted. Thermoelectric generators (TEGs) are solid-state gadgets utilized in the conversion of heat to electricity. Hence, the aim of this study is to convert the heat flux generated at the disc contact surface into electrical energy by employing a thermoelectric generator. In Addition, the energy harvested energy to power the battery, which in turn charges the temperature monitoring systems. Thermoelectric generators were positioned at different geometrical points of the brake discs to achieve optimal efficiency and energy storage possibilities.
Technical Paper

Temperature Control Characteristics of Automotive Power Battery Based on R-1233zd(E)’s Flowing Phase Change Heat Transfer

2018-04-03
2018-01-1191
Li-ion power battery is the core component of the electric vehicle power system, and the battery temperature will increase because of the electrochemical reaction of the Li-ion battery. The heat accumulates inside of the battery, which can degrade the working performance of the power battery and shorten the battery cycle life. At present, the wind cooling technology is relatively mature. However, it cannot achieve ideal heat dissipation effect under the working conditions of the high-power or high ambient temperature. In this research, the battery thermal management is carried out by the characteristics of the working fluid’s flowing phase change heat transfer. The phase change working fluid is R-1233zd(E) which is a kind of environmentally friendly liquid with nonconductive and nonflammable. It can achieve the purpose of controlling the battery’s temperature using the characteristics of isothermal heat absorption under different gas phase rate of phase change working fluid.
Technical Paper

Research on Heat Management Performance of Heat Pipe-Fin Based on Optimal Design

2021-04-06
2021-01-0752
As one of the core components of electric vehicle, the performance of power battery is largely determined by thermal management system. Air cooling is difficult to meet the heat dissipation requirements of high-power power batteries. Liquid cooling arrangement is complex and requires high sealing performance. Phase change materials will increase the mass of battery packs. Heat pipes have good heat conduction, temperature equalization performance and light weight, and it is an ideal cooling and heat dissipation technology with efficient cooling fins. In this paper, a thermal management system of power battery based on heat pipe and fin is proposed. The maximum temperature and wall temperature difference of power battery are reduced by heat pipe and fin heat dissipation. The influence of different fin spacing and heights on the thermal management system is studied, and then the fin spacing and height are optimized.
Technical Paper

SUV Solar Roof with Photo-Thermal Effect for Ventilation ORC System

2016-04-05
2016-01-0240
The Organic Rankine Cycle System (ORC) is an effective means to use the solar energy. The system adopts the solar energy on the car roof as the heat source to make the ORC work and drive the thermoelectric air-conditioner. It can improve the entering comfort on the parking condition and the vehicle energy utilization efficiency. In this research, the system comprehensively applied the principle of sunshine concentration, heat collection and photo electricity. Then considering the working condition and performance features of ORC system, the car roof was designed to have a compact structure, through which the efficiency of the solar vehicle system could be improved. Firstly, the research analyzed the heat source temperature and the heat flux impact on the output power of the ORC system. After that, the performance of heat collection was identified according to the given thermoelectric air-condition’s power requirements.
Technical Paper

Downhill Safety Assistant Driving System for Battery Electric Vehicles on Mountain Roads

2019-09-15
2019-01-2129
When driving in mountainous areas, vehicles often encounter downhill conditions. To ensure safe driving, it is necessary to control the speed of vehicles. For internal combustion engine vehicles, auxiliary brake such as engine brake can be used to alleviate the thermal load caused by the continuous braking of the friction brake. For battery electric vehicles (BEVs), regenerative braking can be used as auxiliary braking to improve brake safety. And through regenerative braking, energy can be partly converted into electrical energy and stored in accumulators (such as power batteries and supercapacitors), thus extending the mileage. However, the driver's line of sight in the mountains is limited, resulting in a certain degree of blindness in driving, so it is impossible to fully guarantee the safety and energy saving of downhill driving.
X