Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

Time Resolved Exhaust Port Sampling Studies Related to Hydrocarbon Emissions from SI Engines

1998-10-19
982558
The role of post-combustion oxidation in influencing exhaust hydrocarbon emissions from spark ignition engines has been identified as one of the major uncertainties in hydrocarbon emissions research [l]*. While we know that post-combustion oxidation plays a significant role, the factors that control the oxidation are not well known. In order to address some of these issues a research program has been initiated at Drexel University. In preliminary studies, seven gaseous fuels: methane, ethane,ethene,propane,propene, n-butane, 1-butene and their blends were used to examine the effect of fuel structure on exhaust emissions. The results of the studies presented in an earlier paper [2] showed that the effect of fuel structure is manifested through its effect on the post-combustion environment and the associated oxidation process. A combination of factors like temperatures, fuel diffusion and reaction rates were used to examine and explain the exhaust hydrocarbon emission levels.
Technical Paper

Tracer Fuel Injection Studies on Exhaust Port Hydrocarbon Oxidation

1998-10-19
982559
Time resolved exhaust port sampling results show that the gas mixture in the port at exhaust valve closing contains high concentrations of hydrocarbons. These hydrocarbons are mixed with hot in-cylinder gases during blowdown and can react either via gas phase kinetics in the exhaust port/runner system or subsequently on the exhaust catalyst before they are emitted. Studies were conducted on a single cylinder, four stroke engine in our laboratory to determine the interaction between the hot blowdown gases and the hydrocarbons which remain in the exhaust port. A preselected concentration and volume of hydrocarbon tracers (propane, propene, n-butane, and 1-butene) in either oxygen/nitrogen mixtures or pure nitrogen were injected into the exhaust port just behind the exhaust valve to control the initial conditions for any potential oxidation in the port.
Technical Paper

Prediction of Pre-ignition Reactivity and Ignition Delay for HCCI Using a Reduced Chemical Kinetic Model

2001-03-05
2001-01-1025
Homogeneous Charge Compression Ignition (HCCI) engines have the possibility of low NOx and particulate emissions and high fuel efficiencies. In HCCI the oxidation chemistry determines the auto-ignition timing, the heat release rate, the reaction intermediates, and the ultimate products of combustion. This paper reports an initial effort to apply our reduced chemical kinetic model to HCCI processes. The model was developed to study the pre-ignition characteristics (pre-ignition heat release and start of ignition) of primary reference fuels (PRF) and includes 29 reactions and 20 active species. The only modifications to the model were to make the proscribed adjustments to the fuel specific rate constants, and to enhance the H2O2 decomposition rate to agree with published data.
Technical Paper

The Autoignition of n-Pentane in a Non-Fired Single Cylinder Engine

1993-10-01
932756
The detailed chemical reactions leading to autoignition of n-pentane are investigated in this study. A single-cylinder engine operating in a nonfired mode was used. The engine is supercharged and the temperature of the inlet fuel/air mixture is varied. By increasing the inlet manifold temperature, at a given inlet manifold pressure, the fuel/air mixture can be made to undergo autoignition. In-cylinder pressure and temperature profiles were measured. Gas samples from the combustion chamber were extracted and analyzed using gas chromatography techniques. The detailed chemical reaction mechanisms explaining the products from the different stages of the fuel oxidation process are presented. It is speculated that the generation of OH radicals from the peroxide (QOOH) decomposition is responsible for the autoignition of the n-pentane fuel/air mixture.
Technical Paper

Long Life Performance of Carboxylic Acid Based Coolants

1994-03-01
940500
An inhibitor package which is silicate-, nitrate-, borate- and phosphate-free has been developed as the basis for a world-wide automotive coolant formulation. The formulation contains aliphatic mono- and dicarboxylic acids and tolyltriazole as the sole inhibitors. Formulations containing carboxylic acid inhibitors have been studied in ASTM bench tests and found to sufficiently protect all prevalent cooling system metals. In addition, fleet tests have shown that carboxylic acid inhibitors deplete much more slowly than conventional inhibitors, making possible a much longer life coolant. Results from laboratory tests which simulate extended usage indicated that carboxylic acid-containing coolants have a significantly longer life span for the protection of all cooling system metals. Finally, the carboxylic acid/tolyltriazole inhibitor package is completely adaptable to a propylene glycol base.
Technical Paper

Corrosion Mechanism of High Lead Solder and Correlation to Dissolved Oxygen

1994-03-01
940497
High lead solder coupons are frequently tested in ASTM D 1384-87 and D 2570-91 tests to determine the corrosion protection provided by engine coolants. In contrast to 70/30 solder, high lead solder is often observed to show relatively high corrosion rates in D 1384-87 testing. Surprisingly, the high lead solder corrosion rates tend to be lower in the D 2570-91 test, despite the longer duration of this test. The basis of this effect has been investigated in different coolant formulations and in both ethylene glycol and propylene glycol. The corrosion of high lead solder was found to be directly related to the presence of oxygen in the D 1384-87 test. Replacement of the air purge with a nitrogen purge significantly reduced the corrosion rate of high lead solder in inhibited coolants. These results are interpreted in terms of the solder composition.
Technical Paper

The Effect of Silicate Content in Engine Coolants on the Corrosion Protection of Aluminum Heat-Rejecting Surfaces

1994-03-01
940498
The effect of small amounts of silicate on coolant performance has been studied. The corrosion protection provided by different coolant technologies was evaluated for different silicate contents. This work includes results from electrochemical tests and static and dynamic heat-rejecting tests on aluminum surfaces. The results indicate that small amounts of silicate have a negative effect on the corrosion protection of aluminum. Depletion of silicates can therefor be expected to affect aluminum heat-rejecting surfaces. The use of carboxylic acid corrosion inhibitors can overcome this problem.
Technical Paper

Coolant Pump Failure Rates as a Function of Coolant Type and Formulation

1994-03-01
940768
Automobile coolant pump failure rates have been observed to be influenced by the coolant inhibitor package. A fleet test consisting of 196 1991 Ford Crown Victoria taxi cabs was utilized to test six coolant formulations. Four of the test formulations were monobasic/dibasic organic acid technology coolants and two were traditional technology coolants containing nitrate, phosphate, and silicate. Coolant pump failure rates were monitored as a function of mileage. Results indicate that the service life of coolant pumps for those systems employing organic acid technology coolants was significantly greater than those systems utilizing traditional inhibitor technology coolants.
Technical Paper

A Compatibility Study of Mixtures of a Monoacid/Dibasic Acid Coolant and a Traditional Nitrite-Free Coolant

1994-03-01
940769
Mixtures of a novel corrosion inhibitor, based on the synergistic combination of aliphatic mono- and dibasic acids with a traditional coolant have been evaluated in: a stability test an electrochemical test the ASTM D 1384 Glassware Corrosion Test the ASTM D 4340 Aluminum Heat-Rejection Test a Dynamic Heat-Transfer Test. This paper discusses the results of these tests and the relevance of the tests in assessing the performance of the coolant mixtures. Recommendations are made to the selection of methods that provide significant information on coolant compatibility.
Technical Paper

Performance of Organic Acid Based Coolants in Heavy Duty Applications

1996-02-01
960644
Coolant formulations based on organic acid corrosion inhibitor technology have been tested in over 180 heavy duty engines for a total of more than 50 million kilometers. This testing has been used to document long life coolant performance in various engine types from four major engine manufacturers. Inspections of engines using organic acid based coolant (with no supplemental coolant additive) for up to 610,000 kilometers showed excellent protection of metal engine components. Improved protection was observed against cylinder liner, water pump, and aluminum spacer deck corrosion. In addition, data accumulated from this testing were used to develop depletion rate curves for long life coolant corrosion inhibitors, including tolyltriazole and nitrite. Nitrite was observed to deplete less rapidly in long life coolants than in conventional formulations.
Technical Paper

Comparison of Surface Coatings Formed from Carboxylic Acid-Based and Conventional Coolants in a Field-Test Study

1996-02-01
960640
Field-test samples cut from radiator tubes in two 1990 Chevy Luminas (3.1L engine) after 100,000 miles were analyzed to determine corrosion layer differences. One car used a carboxylic acid-based inhibitor technology (C1). The other car used a conventional coolant (C2). X-ray photoelectron spectroscopy (XPS) analysis of the two samples was performed. Results indicate a significant difference between the two samples. The C1 sample had a thin (<60Å) organic coating bound to the aluminum alloy surface, while the C2 sample had a much thicker (>1000 Å) silicate-rich layer. This resulted in the C2 sample exhibiting “surface charging” behavior. These results relate directly to the metal/insulator (conductor/insulator) characteristics of the two samples, and imply that the heat transfer of the protective coating provided by the carboxylate technology (C1) is significantly better than that of traditional inhibitor technology (C2).
Technical Paper

Some Observations on the Effects of EGR, Oxygen Concentration, and Engine Speed on the Homogeneous Charge Combustion of n-Heptane

2004-06-08
2004-01-1905
NOx and soot emissions remain critical issues in diesel engines. One method to address these problems is to achieve homogeneous combustion at lower peak temperatures - the goal of research on controlled autoignition. In this paper n-heptane is used to represent a large hydrocarbon fuel and some of the effects of internal and external EGR, oxygen concentration, and engine speed on its combustion have been examined through simulation and experiment. Simulations were conducted using our existing skeletal chemical kinetic model, which combines the chemistry of the low, intermediate, and high temperature regimes. Experiments were carried out in a single cylinder, four-stroke, air cooled engine and a single cylinder, two stroke, water cooled engine. In the four-stroke engine experiments the effects of EGR were examined using heated N2 addition as a surrogate for external EGR and engine modifications to increase internal EGR.
Technical Paper

Effects of DTBP on the HCCI Combustion Characteristics of SI Primary Reference Fuels

2005-10-24
2005-01-3740
One option for ignition control of Homogeneous Charge Compression Ignition (HCCI) engines is to use small amounts of ignition-enhancing additives to alter the ignition properties. Di-tertiary Butyl Peroxide (DTBP) is one such additive and it has been suggested as a cetane improver in diesel engines. In this study, the effects of DTBP on spark ignition (SI) primary reference fuels (PRFs, n-heptane and iso-octane) and their blends (PRF20, PRF50, PRF63, PRF87 and PRF92) were investigated during HCCI engine operation. Experiments were run in a single cylinder CFR research engine for three inlet temperatures (410, 450 and 500 K) and several equivalence ratios (0.28 - 0.57) at a constant speed of 800 rpm and a compression ratio of 16.0. Experimental results show that ignition delay time, cycle to cycle variation, and stable operating range were all improved with the addition of less than 2.5% DTBP by volume.
Technical Paper

Two Types of Autoignition and Their Engine Applications

2005-04-11
2005-01-0178
The generally accepted explanation of autoignition in engines is that the reactivity is driven by temperature, where autoignition occurs after the mixture has reached some critical temperature (approx. 1000 K) by a combination of self-heating due to preignition reactions and compression heating due to piston motion and flame propagation. During the course of our investigations into autoignition processes and homogeneous charge compression ignition we have observed some ignitions that begin at much lower temperature (< 550 K). In this paper we describe these observations, our attempts to investigate their origins, and an alternative explanation that proposes that traditional models may be missing the chemistry that explains this behavior. Finally, applications of lower temperature chemical reactions are discussed.
Technical Paper

Tracer Fuel Injection Studies on Exhaust Port Hydrocarbon Oxidation: Part II

2000-06-19
2000-01-1945
Recently, studies were conducted on a single cylinder, four stroke engine to investigate the effect of temperature and local mixedness on exhaust port hydrocarbon oxidation. To examine the effect of temperature, hydrocarbon tracers (propane, propene, 1-butene, n-butane, and n-pentane) were individually injected into the exhaust port just behind the exhaust valve for operating conditions that provided different exhaust port temperatures. For the local mixedness experiments, tracer mixtures (propane + n-butane, 1-butene + n-butane, propene + n-butane) were injected into the exhaust port just behind either a normal exhaust valve or a shrouded exhaust valve. The concentration of tracers and their reaction products were measured using gas chromatography of samples withdrawn from the exhaust stream. The tracer consumption behavior with changing port temperature confirmed that there is a minimum port temperature for hydrocarbon oxidation.
Technical Paper

Instrument for Field Monitoring of Carboxylate Coolants and Heat-Exchange Fluids

2000-06-19
2000-01-1978
For several years now, organic acid based coolants and heat exchange fluids have been introduced on the automotive and industrial market place. The organic acid based coolants provide improved high temperature aluminum corrosion protection and longer drain intervals when compared to traditional coolants. In order to evaluate the organic acid based coolant quality in the field; the end user needs to be able to check several physico-chemical parameters of the coolant. First of all the amount of carboxylate based inhibitors should be determined because the customers can top the system with water. As a result the carboxylates can drop under the minimum required inhibitor level.
Technical Paper

Extended Life Carboxylate Coolant Compatibility with Other Coolant Technologies - Examining the Data

2000-06-19
2000-01-1977
Previous studies examined the effect of low levels of silicate (∼<75ppm Si) on hot aluminum corrosion protection. The corrosion protection provided by different coolant technologies was evaluated at different silicate levels. The results indicated that small amounts of silicate have a negative effect on the corrosion protection of aluminum. This work will examine these results and evaluate the effectiveness of different laboratory tests for determining coolant “compatibility.” Results will be examined from several bench and fleet tests showing the effect of coolant mixing on the corrosion rates in various environments. The bench test results will include laboratory glassware and dynamic tests that have been used historically to evaluate coolant compatibility. Differences between the test methods will also be evaluated to determine the relevance of each test procedure in light of the fleet observations.
X