Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Experimental Rattle Source Characterisation Using Matrix Inversion on a Reception Plate

2020-09-30
2020-01-1541
Minimizing rattle noises is becoming increasingly important for hybrid and electrical vehicles as masking from the internal combustion engine is missing and in view of the functional requirements of the office-like interiors of next generation automated vehicles. Rattle shall therefore be considered in the design phase of component systems. One hurdle is the modelling of the excitation mechanisms and its experimental validation. In this work we focus on excitation by loose parts having functional clearances such as gear systems or ball sensors in safety belt retractors. These parts are excited by relatively large low frequency displacements such as road-induced movements of the car body or low order rigid body engine vibrations generating multiple impacts with broad band frequency content. Direct measurement of the impact forces is in many cases not possible.
Technical Paper

Directivity Measurements of Low Frequency Sound Field Radiated from an Open Cylindrical Pipe with a Hot Mean Flow

2016-06-15
2016-01-1822
Radiation of sound from an open pipe with a hot mean flow presents one of the classic problems of acoustics in inhomogeneous media. The problem has been especially brought into focus in the last several decades, in the context of noise control of vehicle exhaust systems and jet engines. However, the reports on the measurements of the radiated sound field are still rare and scattered over different values of subsonic and supersonic flow speeds, cold and hot jets, as well as different sound frequency ranges. This paper focuses on low Mach number values of the mean flow speed and low frequencies of the incident (plane) sound waves inside an unflanged cylindrical pipe with a straight cut. It presents the results of the far-field radiation pattern measurements and compares them with an existing analytical model from the literature. The mean flow inside the pipe reached Mach number values up to 0.25 and temperature up to 300°C.
Technical Paper

Robustness and Reliability Enhancement on Retractor Noise Testing, from Development Considerations to Round Robin

2018-06-13
2018-01-1533
Sensing and acting elements to guarantee the locking functions of seat belt retractors can emit noise when the retractor is subjected to externally applied vibrations. For these elements to function correctly, stiffness, inertia and friction needs to be in tune, leading to a complex motion resistance behavior, which makes it delicate to test for vibration induced noise. Requirements for a noise test are simplicity, robustness, repeatability, and independence of laboratory and test equipment. This paper reports on joint development activities for an alternative test procedure, involving three test laboratories with different equipment. In vehicle observation on parcel shelf mounted retractors, commercially available test equipment, and recent results from multi-axial component tests [1], set the frame for this work. Robustness and reliability of test results is being analyzed by means of sensitivity studies on several test parameters.
Technical Paper

Mechanical Retractor Noise Evaluation on Electrodynamic Shaker: Test Procedure

2018-06-13
2018-01-1532
Modern vehicles are driven with various speeds over specific rough road tracks to detect the presence of annoying buzz, squeak and rattle sounds. As known in the occupant safety industry the mechanical locking systems of seat belt retractors can be significant noise sources, when excited by road vibrations. A reliable bench test procedure is necessary to quantify the acoustic performance of retractors, verify production quality, and derive realistic acoustic product targets. With this goal, a vibration noise test procedure has been developed condensing the work over three years by the K2 Comet automotive research project X2T1, various OEM retractor noise specifications closed to public and own research. The load case in this specification has been defined as horizontal 60 Hz bandlimited broadband excitation, while the N10 instationary loudness metric has been selected to characterize the retractor acoustic performance.
Technical Paper

Seat Belt Retractor Noise Test Correlation to 2DOF Shaker Test and Real Vehicle Comfort

2018-06-13
2018-01-1507
Seatbelt retractors as important part of modern safety systems are mounted in any automotive vehicle. Their internal locking mechanism is based on mechanically sensing elements. When the vehicle is run over rough road tracks, the retractor oscillates by spatial mode shapes and its interior components are subjected to vibrations in all 6 degrees of freedoms (DOF). Functional backlash of sensing elements cause impacts with neighbouring parts and leads to weak, but persistent rattle sound, being often rated acoustically annoying in the vehicle. Current acoustic retractor bench tests use exclusively uni-directional excitations. Therefore, a silent 2 DOF test bench is developed to investigate the effect of multi-dimensional excitation on retractor acoustics, combining two slip-tables, each driven independently by a shaker. Tests on this prototype test bench show, that cross coupling between the two perpendicular directions is less than 1%, allowing to control both directions independently.
Technical Paper

Convected Wave Equation for a Moving Body in an Inhomogeneous Flow

2018-06-13
2018-01-1517
Sound field around a moving body in a mean flow of fluid is commonly estimated with Ffowcs Williams and Hawkings equation. Similarly as Lighthill’s aeroacoustic analogy, Ffowcs Williams and Hawkings equation includes sound propagation phenomena in moving and inhomogeneous media, such as convection and refraction, implicitly within the source terms on the right-hand side of the equation. Consequently, the equation is primarily applicable when the surrounding fluid is quiescent everywhere outside the source region. In this work, we follow the approach of Phillips and derive an exact aeroacoustic equation for a moving body in an inviscid and isentropic flow, which separates source and propagation terms on the two sides of the equation. As such, the equation can be used even when the sound propagation effects have a significant influence on the sound field.
X