Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Rear Stiffness Coefficients Derived from Barrier Test Data

1991-02-01
910120
Rear impacts in the crash test data base compiled by the NHTSA are analyzed and compared to the CRASH3 rear stiffness coefficients. The CRASH3 values do not represent the test data adequately. This is because the values were derived from limited data, and because some of the rear moving barrier test data were miscoded as fixed barrier tests. A review of the larger NHTSA data base does not support the CRASH3 assumption that vehicles of similar size (wheelbase) have similar rear stiffness characteristics. Therefore, it is important when reconstructing individual accidents to use crash test data specific to the vehicles involved. Repeated rear fixed barrier test data on four vehicles are analyzed to study the data trend at speeds below and above the NHTSA test data. Constant stiffness and constant force models are compared and a combination of the two is shown to fit available test data.
Technical Paper

Occupant Protection in Rear-end Collisions: II. The Role of Seat Back Deformation in Injury Reduction

1991-10-01
912914
The National Highway Traffic Safety Administration (NHTSA) has recently opened a rulemaking docket seeking comments on the design of automobile seats and their performance in rear Impacts. There are two philosophies of seat design: one advocates rigid seats, the other advocates seats which yield in a controlled manner. A review of the legislative history of seat back design standards indicates that yielding seats have historically been considered a better approach for passenger cars. The design characteristics of current production automobile seats are evaluated and show no significant changes over the past three decades. Concerns about the performance of rigid seat backs in real world rear impacts are discussed, specifically increased injury exposure due to ramping, rebound and out-of-position occupants.
Journal Article

Rollover Dynamics: An Exploration of the Fundamentals

2008-04-14
2008-01-0172
Research focusing on automotive rollovers has garnered a great deal of attention in recent years. Substantial effort has been directed toward the evaluation of rollover resistance. Issues related to crashworthiness, such as roof strength and restraint performance, have also received a great deal of attention. Much less research effort has been directed toward a more detailed study of the rollover dynamics from point-of-trip to point-of-rest. The reconstruction of rollover crashes often requires a thorough examination of the events taking place between point-of-trip and point-of-rest. Increasing demands are placed on reconstructionists to provide greater levels of detail regarding the roll sequence. Examples include, but are not limited to, roll rates at the quarter-roll level, CG trajectory (horizontal and vertical), roll angle at impact, and ground contact velocity. Often the detail that can be provided in a rollover reconstruction is limited by a lack of physical evidence.
Technical Paper

The Assessment of the Societal Benefit of Side Impact Protection

1990-02-01
900379
This paper summarizes work relating to the assessment of societal benefits of side impact protection. National Crash Severity Study (NCSS) and National Accident Sampling System (NASS) accident data technigues were reviewed with respect to the reliability of output information concerning the distribution of side impact accidents by impact severity and relationships between injury and impact severity. NCSS and NASS are confounded by errors and inadequacies, primarily as a result of improper accident reconstruction based upon the CRASH computer program. Based on review of several sample cases, it is believed that the NCSS/NASS files underestimate Lower severities and overestimate higher severities in side impact, with delta-V errors probably overestimated by 25-30 percent in the case of the more serious accidents. These errors cannot be properly quantified except on a case-by-case basis. They introduce unknown biases into NCSS/NASS.
Technical Paper

A Perspective on Side Impact Occupant Crash Protection

1990-02-01
900373
The NHTSA notices of proposed rulemaking on side impact protection have focused worldwide attention on one of the most difficult and frustrating efforts in automobile crash safety. Traditional vehicle design has evolved obvious structural contrasts between the side of the struck vehicle and the front of the striking vehicle. Protection of near-side occupants from intruding door structure is a most perplexing engineering challenge. Much useful and insightful engineering work has been done in conjunction with NHTSA's proposed rulemaking. However, there are many major engineering issues which demand further definition before reasonable side impact rulemaking test criteria can be finalized. This paper reviews recent findings which characterize the human factors, biomechanics, and occupant position envelope of the typical side impact crash victim.
Technical Paper

Headroom, Roof Crush, and Belted Excursion in Rollovers

2005-04-11
2005-01-0942
Based upon a review of the literature and new test data, the human and vehicle factors leading to head-to-roof contact in rollovers are quantified and illustrated. Vehicle design countermeasures and suggested areas of research are presented. Higher and stronger roofs and improved restraints must be analyzed as a system to evaluate the potential benefits in rollovers.
Technical Paper

The Accuracy and Usefulness of SMAC

1978-02-01
780902
Computer-aided crash reconstruction has become common-place in the automotive safety profession, primarily because of widespread distribution of software under public auspices. The SMAC (Simulation Model of Automobile Collisions) program, for instance, is available through NHTSA at nominal cost. This paper exhibits some of the limitations and strengths of accident reconstruction simulations, with illustrations and emphasis drawn from the SMAC program. In particular, some coarse physical approximations used and some coding errors incurred in the formulation of SMAC are discussed, together with their respective effects on the accuracy of prediction. Revisions of the basic SMAC coding have been developed at BYU to overcome these shortcomings. Results of uncorrected and revised SMAC simulations are demonstrated by comparison with the physical theory. Comments regarding a new SMAC program just completed under U.S. Government contract are presented where appropriate.
Technical Paper

Proportional Braking of Solid-Frame Vehicles

1971-02-01
710047
An engineering analysis of vehicle braking is presented in terms of the utilization of available road friction. Physical relations are derived which allow the determination of optimum brake force distribution on front and rear wheels as a function of axle loading. Ideal braking distribution curves are shown for a typical vehicle in the loaded and unloaded conditions. A technique is suggested for rational design of braking system parameters. It is applied to the case of a two-stage proportioning system, and is validated by experimental data from tests using a specially equipped light truck. It is concluded that a proper design analysis can establish a combination of braking system parameters which results in improved utilization of available friction. A simple, self-adjusting brake proportioning system can be a highly cost-effective safety device for truck use.
Technical Paper

Improvements to the SMAC Program

1983-02-01
830610
The Simulation Model of Automobile Collisions (SMAC) computer program has seen more than a decade of use under NHTSA auspices. Although SMAC has proven itself to be a useful investigative tool, the program has several shortcomings which either have been addressed by the authors or need to be addressed by further work. This paper presents the results of our ongoing work to improve SMAC and our recommendations for further work. Those model features discussed herein which either have been or need to be revised consist of (1) the calculation of crush forces when penetration is deep (2) the representation of the vehicles' crush pressure vs deflection relationship and (3) the distribution of tire normal forces in reaction to pitch and roll. An input interfacing program called SMACED has been written and is discribed. This editing program greatly simplifies the use of SMAC and will be found particularly useful for the inexperienced or infrequent SMAC user.
Technical Paper

Design, Development and Testing of a Load-Sensing Crash Dummy Face

1984-02-01
840397
This project covers one facet of a program to develop a mechanical model for characterizing the time history of local forces on the zygomatic, maxillary and mandible regions of the human face during a frontal collision. Two mechanical devices to measure the forces on crash dummies during testing were designed, constructed and tested. The devices employed cantilever beams equipped with strain gauges. Both devices were subjected to a series of drop tests onto various materials. Time histories were compared to those obtained from cadaver experiments. While the data obtained from this testing appears to be similar to the cadaver data, further improvements and modifications will make the model much more useful.
Technical Paper

Thoracic Impact Response of Live Porcine Subjects

1976-02-01
760823
Five anesthetized porcine subjects were exposed to blunt thoracic impact using a 21 kg mass with a flat contact surface traveling at 3.0 to 12.2 m/s. The experiments were conducted to assess the appropriateness of studying in vivo mechanical and physiological response to thoracic impact in a porcine animal model. A comprehensive review of comparative anatomy between the pig and man indicates that the cardiovascular, respiratory and thoracic skeletal systems of the pig are anatomically and functionally a good parallel of similar structures in man. Thoracic anthropometry measurements document that the chest of a 50 to 60 kg pig is similar to the 50th percentile adult male human, but is narrower and deeper. Peak applied force and chest deflection are in good agreement between the animal's responses and similar impact severity data on fresh cadavers.
Technical Paper

A Technical Review of Automotive Racing Fuels

1985-10-01
852129
Automobile racing engine performance has historically progressed with and aided the development of automotive technology. Racing engine performance has been improved in various applications with specialized liquid fuels, such as nitroparaffins, alcohol (methanol) and certain hydrocarbons used in racing gasolines. This paper presents physical and thermodynamic properties of commonly used racing fuels and selected additives, including nitrous oxide and hydrazine. Improving the antiknock properties of gasoline for racing purposes is also discussed. Engine operating characteristics and power output for each fuel are discussed in terms of appropriate fuel properties and engine parameters such as air/fuel ratio and compression ratio. Combustion of various fuels is discussed along with the effect of dissociation and heat loss on performance. Some experimental performance data are presented, and theoretical and practical considerations which effect fuel utilization are also discussed.
Technical Paper

A Perspective on Automobile Crash Fires

1985-02-25
850092
The relatively rare occurrence of injury or fatality in fuel-fed fires has received considerable attention in automotive safety rulemaking and products liability litigation. The literature related to fatalities associated with fire is confirmed by recent FARS data, and there are no reliable field data which confirm a need for further injury-reducing effect related to FMVSS 301. NHTSA has acknowledged this by removing crash fire rulemaking from its priorities plan. The police-reported crash fire data now available must be supplemented with in-depth investigation by trained teams before informed judgements can be made regarding further safety improvements with respect to crash fire injury.
Technical Paper

The VTS Single-Vehicle Trajectory Simulation

1985-02-25
850252
A vehicle trajectory simulation called VTS has been developed as an aid for reconstruction of automobile accidents. The two dimensional vehicle has longitudinal, lateral and yaw degrees of freedom, a point mass at the center of gravity) yaw inertia about the center of gravity and four contact points (“tires”) which can be arbitrarily positioned. No collision or aerodynamic forces are modeled. The traction surface is represented as a flat plane with a specified nominal friction coefficient. Several quadrilateral “patches” may be applied to the surface to change the friction coefficient in specific regions. User vehicle control consists of timewise tables for steering angle and traction coefficient for each of the four wheels. When used individually or in conjunction with other computer modules, VTS provides a convenient, accurate modular tool for trajectory simulation.
Technical Paper

Evaluation of Seat Back Strength and Seat Belt Effectiveness in Rear End Impacts

1987-11-01
872214
The issues of front seat energy absorption and seat belt effectiveness are investigated first through the review of prior experimental and analytical studies of rear impact dynamics. These prior studies indicate that the current energy absorption characteristic of seats is a safety benefit. Prior efforts to construct a rigidized seat indicate that such designs are likely to be impractical due to excessive weight and cost. Additionally, these studies indicate that seat belts provide an important safety function in rear impacts. Static tests of production seats were conducted, added to an existing data base, and analyzed to better understand the strength and energy absorbing characteristics of production seats. Crash test results from the New Car Assessment Program as well as earlier test programs were analyzed to describe the response of occupants and seats in rear impact and the protective function of seat belts in such collisions.
Technical Paper

Injury and Intrusion in Side Impacts and Rollovers

1984-02-01
840403
The relationship between occupant crash injury and occupant compartment intrusion is seen in the perspectives of the velocity-time analysis and the NCSS statistical data for two important accident injury modes, lateral and rollover collisions. Restraint system use, interior impacts, and vehicle design features are considered. Side impact intrusion is analyzed from physical principles and further demonstrated by reference to staged collisions and NCSS data. Recent publications regarding findings of the NCSS data for rollovers, as well as the NCSS data itself, are reviewed as a background for kinematic findings regarding occupant injury in rollovers with roof crush.
Technical Paper

Determination and Mechanisms of Motor Vehicle Structural Restitution from Crash Test Data

1999-03-01
1999-01-0097
The coefficient of restitution is an indicator of the elasticity of a collision. Restitution, or elastic rebound of a deformed surface, contributes to the change in velocity of collision partners, a common measure of injury severity in automobile collisions. Because of the complex nature of collisions between motor vehicles, the characterization of the expected magnitude of the coefficient in such collisions lacks detail and mechanisms influencing its value are not well understood. Using crash test data from the National Highway Traffic Safety Administration (NHTSA), this study investigates the expected magnitude of the coefficient of restitution and mechanisms influencing restitution in automobile collisions. Both vehicle-to-barrier and vehicle-to-vehicle tests are considered for all types of collisions. The influence of a variety of collision and vehicle parameters on restitution is also explored.
Technical Paper

Friction Applications in Accident Reconstruction

1983-02-01
830612
The determination of appropriate friction coefficient values is an important aspect of accident reconstruction. Tire-roadway friction values are highly dependent on a variety of physical factors. Factors such as tire design, side force limitations, road surface wetness, vehicle speed, and load shifting require understanding if useful reconstruction calculations are to be made. Tabulated experimental friction coefficient data are available, and may be improved upon in many situations by simple testing procedures. This paper presents a technical review of basic concepts and principles of friction as they apply to accident reconstruction and automobile safety. A brief review of test measurement methods is also presented, together with simple methods of friction measurement to obtain more precise values in many situations. This paper also recommends coefficient values for reconstruction applications other than tire- roadway forces.
Technical Paper

Crush Energy in Accident Reconstruction

1986-02-24
860371
Vehicle accident reconstruction methods based on deformation energy are argued to be an increasingly valuable tool to the accident reconstructionist, provided reliable data, reasonable analysis techniques, and sound engineering judgement accompany their use. The evolution of the CRASH model of vehicle structural response and its corresponding stiffness coefficients are reviewed. It is concluded that the deformation energy for an accident vehicle can be estimated using the CRASH model provided that test data specific to the accident vehicle is utilized. Published stiffness coefficients for vehicle size categories are generally not appropriate. For the purpose of estimating vehicle deformation energy, a straight-forward methodology is presented which consists of applying the results of staged crash tests. The process of translating crush profiles to estimates of vehicle deformation energies and velocities is also discussed.
X