Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Product Development for AV and EV Reliability

According to NHTSA, there were 932 vehicle recalls in the United States in 2022, affecting approximately 31 million vehicles; 39 electric vehicle recalls affecting more than 1.3 million vehicles, and 56 ADAS recalls affecting more than 4.7 million vehicles. Furthermore, Warranty Week reports that Worldwide Auto Manufacturers allocated a total of $54.7 billion for future warranty repairs or $670 per vehicle sold in 2022. 2023 Consumer Report indicates that Electrical Vehicles have 79% more reliability issues than ICE vehicles.
Video

Real-time Tire Imbalance Detection Using ABS Wheel Speed Sensors

2011-11-15
This presentation proposes an approach to use ABS wheel speed sensor signals together with other vehicle state information from a brake control module to detect an unbalanced tire or tires in real-time. The proposed approach consists of two-stage algorithms that mix a qualitative method using band-pass filtering with a quantitative parameter identification using conditional least squares. This two-stage approach can improve the robustness of tire imbalance or imbalances. The proposed approach is verified through vehicle testing and the test results show the effectiveness of the approach. Presenter Jianbo Lu, Ford Motor Co.
Video

A New Policy for COTS Selection: Overcome the DSM Reliability Challenge

2012-03-13
The increasing complexity of aerospace products and programs and the growing competitive pressure is facilitating the aggregation of small, medium and large enterprises of certain geographical regions into more integrated and collaborative entities (clusters). Clusters are by their same nature formed by heterogeneous companies, with huge differences not only in size but also for their core competences: such a diversity is a strength of the cluster, but it also increases its complexity. The purpose of this paper is to describe a benchmarking methodology that can be adopted to assess the performances of companies belonging to a cluster from different perspectives: economics and financials, competitive differentiators, specific know how, business strategies, production and logistic effectiveness, quality of core and supporting processes.
Video

Spotlight on Design Insight: Sensors: Fluid Measurements and Avionics

2015-05-07
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. The quality of fluids used in aviation, such as oil or fuel, is an extremely important safety issue. One way to reliably monitor fluids is through the use of special measurement sensors. In the episode “Fluid Measurements and Avionics” (9:13), an engineer at Meggitt demonstrates the capabilities of time-domain reflectometry sensors, explaining how they are assembled and used. The business case for monitoring oil and fuel degradation, and how to proactively take advantage of preventative maintenance is also explained.
Video

Spotlight on Design Insight: Diagnostics and Prognostics: Telematics Deep Dive

2015-05-04
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. When automotive and aerospace manufacturers look for a material with superior lightweight and strength characteristics, they often look no further than composite materials. In the episode “Composite Materials: New Trends in Automotive Design” (10:20), an engineer from Molded Fiber Glass Research Company demonstrates how they develop and test the properties of composite materials, and an engineer at MirTEQ Incorporated discusses designing molds for an aftermarket composite part.
Video

Hidden Costs in Motor Specifications

2012-05-16
Racing Green Endurance: An EV Record will focus on what a small team of ambitious and talented engineers can do when they have a dream! Back in 2009, a team of graduates from Imperial College London came together to do something radical to change the public perception of electric vehicles forever. They came up with the idea to design and build the world's longest range electric car, and then drive it down the longest and toughest road in the world; the 26,000km Pan-American Highway! Racing Green Endurance: An EV Record will share the story from start to finish, and will also focus on the technology used to achieve such a feat, with particular mention of the electric motors. Presenter Alexander Schey, Imperial College London
Video

Spotlight on Design: Composite Materials: Advanced Materials and Lightweighting

2015-04-15
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode “Composite Materials: Advanced Materials and Lightweighting” (30:20), Molded Fiber Glass Companies, known for its deep involvement in the creative development of the molded fiberglass process for the Corvette, demonstrates the manufacturing of sheet molded composite for fiberglass parts. Tanom Motors introduces the Tanom Invader, a blend between an automobile and a motorcycle made exclusively with composite materials. Finally, Euro-Composites demonstrates the manufacturing of honeycomb core material made out of aramid paper and phenolic resin used in aircraft structures.
Video

Technical Keynote - Introduction to EcoCAR The NeXt Challenge Year Three: Vehicle Refinement and Testing

2012-06-06
Selective Catalytic Reduction (SCR) catalysts are used to reduce NOx emissions from internal combustion engines in a variety of applications [1,2,3,4]. Southwest Research Institute (SwRI) performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO2 formulation, a Cu-zeolite formulation and a Fe-zeolite formulation. This work describes NH3 storage capacity measurement data as a function of aging time and temperature. Addressing one objective of the work, these data can be used in model-based control algorithms to calculate the current NH3 storage capacity of an SCR catalyst operating in the field, based on time and temperature history. The model-based control then uses the calculated value for effective DEF control and prevention of excessive NH3 slip. Addressing a second objective of the work, accelerated thermal aging of SCR catalysts may be achieved by elevating temperatures above normal operating temperatures.
Video

The Benefits of Hybrid Electric Drive for Military Operations

2012-03-27
Hybrid Electric Drive (HED) provides the potential to improve military vehicle capabilities beyond the well understood fuel economy benefits. Additional HED benefits for military operations can be realized in the areas of mobility, survivability, lethality, power generation and maintainability. General Dynamics Land Systems (GDLS) continues to demonstrate significant advantages that HED can offer to military vehicle platforms. This presentation will focus on the advanced military capabilities provided by HED utilizing in-hub wheel motors and include a summary of GDLS demonstrator vehicles with integrated HED. Presenter Andrew Silveri, GENERAL DYNAMICS LAND SYST
Video

Enabling Exponential Growth of Automotive Network Devices while Reducing the Wired Communication Infrastructure with Security, Reliability, and Safety

2012-05-22
The CAN protocol has served the automotive and related industries well for over twenty-five (25) years now; with the original CAN protocol officially released in 1986 followed by the release of CAN 2.0 in 1991. Since then many variants and improvements in CAN combined with the proliferation of automotive onboard microprocessor based sensors and controllers have resulted in CAN establishing itself as the dominant network architecture for automotive onboard communication in layers one (1) and two (2). Going forward however, the almost exponential growth of automotive onboard computing and the associated devices necessary for supporting said growth will unfortunately necessitate an equivalent growth in the already crowded wired physical infrastructure unless a suitable wireless alternative can be provided. While a wireless implementation of CAN has been produced, it has never obtained real traction within the automotive world.
Video

Building Security In: The SPARK Approach to Software Development

2012-05-22
DSM will present various application solutions in High Performance Plastics enabling to significant weight or friction reduction and thus to reduced fuel consumption and/or emission levels, and on top of that to lower system costs. Typical Eco+ Solutions Examples to be presented are: - Friction Reduction: Nylon 46 in chain tensioners yielding up to 1 % fuel reduction - Weight Reduction (metal-to-plastic conversion): Nylon 46 with long term temperature resistance upto 230 C in turbo components, Nylon 6 in oil pans/sumps, PET in plastic precision parts, Nylon 46 in gears, many other examples - Electrification: Nylon 46 in start/stop and e-motor components, TPC in HV cables - System Cost optimization: High Flow PA6 in various components, TPC in Brake Tubes - Improved LCA: biobased materials as PA410 and TPC-Eco Typical Application Solutions concern: air induction systems, engine and transmission components, electrical systems, structural&safety parts.
Video

Component Interoperability For Automotive Safety Issues

2012-05-22
There is a need to accelerate the automotive industry's alert notification and distribution process for quality, reliability, counterfeit, and safety issues that reside in specific electronic components or circuit card assemblies. This paper describes an alert procedure for an entire supply chain that can improve operational efficiency and reduce the costs associated with responding to and resolving those issues. Interoperability: Ability to work with each other. It is frequently unnecessary for separate resources to know the details of how they each work. But they need to have enough common ground to reliably exchange messages quickly without error or misunderstanding. Presenter William Crowley, QTEC Inc.
Video

Biodiesel Permeability in Polyethylene

2012-05-22
This paper reports solubility, diffusivity and permeability data for soy and rapeseed methyl esters in polyethylene together with comparisons with methyl oleate and linoleate. These data were used to discuss the reliability of predictive models for diffusion and solubility of additive type molecules into semi-crystalline thermoplastic polymers. Presenter Emmanuel Richaud
Collection

Tire and Wheel Technology, 2015

2015-04-14
Topics of this technical paper collection include (but are not limited to) nonlinear behavior of tires and wheels, static/dynamic stress analysis, nonlinear material modeling, contact stress, impact, noise, vibration, traction, hydroplaning, effect of tires on vehicle performance, rolling resistance, and durability.
Journal Article

Experimental Investigation of the Near Wall Flow Downstream of a Passenger Car Wheel Arch

2018-03-01
Abstract The flow around and downstream of the front wheels of passenger cars is highly complex and characterized by flow structure interactions between the external flow, fluid exiting through the wheelhouse, flow from the engine bay and the underbody. In the present paper the near wall flow downstream of the front wheel house is analyzed, combining two traditional methods. A tuft visualization method is used to obtain the limiting streamline pattern and information about the near wall flow direction. Additionally, time resolved surface pressure measurements are used to study the pressure distribution and the standard deviation. The propagation of the occurring flow structures is investigated by cross correlations of the pressure signal and a spectral analysis provides the characteristic frequencies of the investigated flow.
Journal Article

Simulation of the Steering System Power Demand during the Concept Phase Focusing on Tire Modelling at Standstill

2021-11-09
Abstract Estimating the power demand of a steering system is one of the main tasks during steering system development in the concept phase of a vehicle development process. Most critical for typical axle kinematics are parking maneuvers with simultaneously high rack forces and velocities. Therefore, the focus of the article is a tire model for standstill, which can be parametrized without measurements, only having tire dimensions and conditions (inflation pressure and wheel load) as input. Combined with a double-track model, a vehicle model is developed, which is able to predict the rack force and is fully applicable during the concept phase. The article demonstrates quantitatively that the tie rod forces, and thereby especially the tire bore torque, cause the largest fraction of the power demand at the rack. For this reason, the prediction of the bore torque is investigated in detail, whereby basic approaches from the literature are analyzed and enhanced.
Journal Article

Using a Dual-Layer Specification to Offer Selective Interoperability for Uptane

2020-08-24
Abstract This work introduces the concept of a dual-layer specification structure for standards that separate interoperability functions, such as backward compatibility, localization, and deployment, from those essential to reliability, security, and functionality. The latter group of features, which constitute the actual standard, make up the baseline layer for instructions, while all the elements required for interoperability are specified in a second layer, known as a Protocols, Operations, Usage, and Formats (POUF) document. We applied this technique in the development of a standard for Uptane [1], a security framework for over-the-air (OTA) software updates used in many automobiles. This standard is a good candidate for a dual-layer specification because it requires communication between entities, but does not require a specific format for this communication.
Journal Article

Evaluation of Thermal Roll Formed Thick Composite Panels Using Surface NDT Methods

2017-09-19
Abstract Inspection of Composite panels is vital to the assessment of their ability to be fit for purpose. Conventional methods such as X-ray CT and Ultrasonic scanning can be used, however, these are often expensive and time consuming processes. In this paper we investigate the use of off-the-shelf Non-Destructive Test, NDT, equipment utilizing Fringe projection hardware and open source software to rapidly evaluate a series of composite panels. These results are then verified using destructive analysis of the panels to prove the reliability of the rapid NDT methods for use with carbon composite panels. This process allows us to quickly identify regions of geometric intolerance or formed defects without the use of expensive sub-surface scanning systems, enabling a fast and cost effective initial part evaluation system. The focus of this testing series is on 6mm thick pre-preg carbon-epoxy composite laminates that have been laid up using AFP and formed using TRF.
Journal Article

Separable and Standard Monte Carlo Simulation of Linear Dynamic Systems Using Combined Approximations

2019-01-25
Abstract Reliability analysis of a large-scale system under random dynamic loads can be a very time-consuming task since it requires repeated studies of the system. In many engineering problems, for example, wave loads on an offshore platform, the excitation loads are defined using a power spectral density (PSD) function. For a given PSD function, one needs to generate many time histories to make sure the excitation load is modeled accurately. Global and local approximation methods are available to predict the system response efficiently. Each way has their advantages and shortcomings. The combined approximations (CA) method is an efficient method, which combines the advantages of local and global approximations. This work demonstrates two methodologies that utilize CA to reduce the cost of crude or separable Monte Carlo simulation (MCS) of linear dynamic systems when the excitation loads are defined using PSD functions.
X