Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to Airframe Engineering Design for Manufacturing, Assembly and Automation

This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. Why is a design for manufacturing, assembly and automation so important? This introductory course on airframe engineering will cover the importance of design for manufacturing, assembly and automation in aerospace. It will review what the key drivers are for a “good” design and some of the key points for manufacturing and assembly of aircraft components. It will look at how an engineer can combine traditional technologies with new, cutting-edge technologies, to determine the best scenario for success.
Video

Certification of Engine Health Management Systems: Guidelines for Selecting Software Assurance Levels

2012-03-16
The use of Engine Health Management (EHM) systems has been growing steadily in both the civilian and the military aerospace sectors. Barring a few notable exceptions (such as certain temperature and thrust margin monitoring) regulatory authorities around the world have not required these systems to be certified in any way. This is changing rapidly. New airframes and engines are increasingly being designed with the assumption that EHM will be an integral part of the way customers will operate these assets. This leads to a need for better guidelines on how such systems should be certified. The SAE E-32 committee on Propulsion System Health Monitoring is leading an industry-wide effort to develop a set of guidelines for certifying EHM systems.
Video

RFID on Aircraft Parts - Industry Initiatives, Testing Standards, and Best Practices for Storing Maintenance History Information Directly on Aircraft Parts

2012-03-22
The aerospace industry has long sought a solution for storing maintenance history information directly on aircraft parts. In 2005 leading airframe manufacturers determined that passive Radio Frequency Identification (RFID) technology presented a unique opportunity to address this industry need. Through the efforts of the Air Transport Association (ATA) RFID on Parts Committee and SAE International testing standards and data specifications are in place to support the broad adoption of passive RFID for storing parts history information directly on aircraft parts. The primary focus of the paper will be on the SAE AS-5678 environmental testing standard for passive RFID tags intended for aircraft use. Detail will be provided to help aerospace manufacturers understand their role and responsibilities for current programs and understand how this may impact their parts certification process.
Video

A Quantitative Risk Analysis for AeroMACS Network Security in SESAR

2012-03-16
The growing need for an efficient worldwide airspace system management, generated by an increasing traffic load, requires new capabilities for air-ground data communication technologies. In order to cope with these requirements, the Federal Aviation Administration (FAA), EUROCONTROL, and the International Civil Aviation Organization (ICAO) have jointly made specific recommendations for candidate technologies for the airport surface communication network. In the SESAR project, the Aeronautical Mobile Airport Communication System (AeroMACS) technology is being developed in such a way to provide next generation broadband and wireless data communications for airport surface applications (i.e. Air Traffic Control ? ATC, Airline Operational Communications ? AOC, and surface vehicles services).
Video

A350XWB Fiber Placement Spars; From R&D Conception Phase to Serial Production

2012-03-23
At the end of 2006, two MTorres engineers visited the plant of Airbus UK in Filton receiving a new challenge: Find a more efficient way to manufacture Carbon Fiber Spars for the new A350 program. The range of possibilities were wide: manual infusion methods (RTM, RIM, RFI...), Automatic Taping & hot forming, or the new technology proposed, Fiberplacement or AFP. Two (2) options were considered: hot forming+ATL and AFP (both using prepeg technology.) The usage of a flat lay-up + hot forming technology was used in the only Airbus program that used carbon fiber for the wing manufacturing so far, the A400M. The expected greater complexity of A350 spar created doubts on the feasibility of using the above process, while the AFP technology, consisting of laying up directly on the final shape of the spar, also raised questions of technical feasibility, apart from the economic ?business case?, in case the productivity of the cell was not big enough. A ?Spar team?
Video

Vertical Picture-Frame Wing Jig Structure Design with an Eye to Foundation Loading

2012-03-14
The foundation of many production aircraft assembly facilities is a more dynamic and unpredictable quantity than we would sometimes care to admit. Any tooling structures constructed on these floors, no matter how thoroughly analyzed or well understood, are at the mercy of settling and shifting concrete, which can cause very lengthy and costly periodic re-certification and adjustment procedures. It is with this in mind, then, that we explore the design possibilities for one such structure to be built in Belfast, North Ireland for the assembly of the Shorts C-Series aircraft wings. We evaluate the peak floor pressure, weight, gravity deflection, drilling deflection, and thermal deflection of four promising structures and discover that carefully designed pivot points and tension members can offer significant benefits in some areas.
Video

Design and Flight Test of a Primary Flight Display Combined Vision System

2012-03-19
Electroimpact Automatic Fiber Placement (AFP) machines lay-up composite parts by accurately placing carbon fiber tow (strips of impregnated carbon fiber) on a mould. In order to achieve high accuracy at high speeds, the processes of feeding and cutting tows must be tuned. Historically, the tuning has been a time-consuming, manual process. This paper will present a methodology to replace manual measurements with an automated laser, improve measurement speed by an order of magnitude, improve accuracy from +/? 0.020? (manual) to +/? 0.015? (laser), and eliminate human error. Presenter Joshua Cemenska, Electroimpact Inc.
Collection

Manufacturing/Materials/Structures, AeroTech 2015

2015-09-16
This collection of technical papers addresses advanced low cost aircraft structures; advanced robotics applications; aircraft coatings, polymers and sealant technologies; automated composites manufacturing; composites fabrications and joining; lean manufacturing, sig sigma & supply chain; metals, fabrication and processing; dimensional management and metrology systems; product design and manufacturing integration; and trimming, drilling & assembly of composites structures.
Standard

Training Program Guidelines for Deicing/Anti-Icing of Aircraft on Ground

2014-08-05
HISTORICAL
ARP5149BDA
This document establishes the minimum criteria for effective training of air carrier and contractor personnel to deice/anti-ice aircraft to ensure the safe operation of aircraft during ground icing conditions. Appendix D specifies guidelines for particular airplane models.
Journal Article

Stall Mitigation and Lift Enhancement of NACA 0012 with Triangle-Shaped Surface Protrusion at a Reynolds Number of 105

2019-11-21
Abstract Transient numerical simulations are conducted over a NACA 0012 airfoil with triangular protrusions at a Reynolds number (Re) of 100000 using the γ-Reθ transition Shear Stress Transport (SST) turbulence model. Protrusions of heights 0.5%c, 1%c, and 2%c are placed at one of the three locations, viz, the leading edge (LE), 5%c on the suction surface, and 5%c on the pressure surface, while the angle of attack (AOA) is varied between 0° and 20°. Results obtained from the time-averaged solution of the unsteady Navier-Stokes equation indicate that the smaller protrusion placed at 5%c on the suction surface improves the post-stall lift coefficient by up to 59%, without altering the pre-stall characteristics. The improvement in time-averaged lift coefficients comes with enhanced flow unsteadiness due to vigorous vortex shedding.
Journal Article

Conceptual Design, Material, and Structural Optimization of a Naval Fighter Nose Landing Gear for the Estimated Static Loads

2019-12-13
Abstract The Naval Nose Landing Gear (NLG) structural assembly consists of components with complex structural geometry and critical functionalities. The landing gear components are subjected to high static and dynamic loads, so they must be appropriately designed, dimensioned, and made by materials with mechanical characteristics that meet high strength, stiffness, and less weight requirements. This article contributes to the shape, size, and material optimization for the NLG of a supersonic naval aircraft for the estimated static loads. The estimated modal frequency values of the NLG assembly using Finite Element Analysis (FEA) software were compared with available Ground Vibration Test data of an aircraft to literally prove the accuracy and suitability of finite element (FE) model that can be used for any further analysis.
Journal Article

ERRATA

2020-05-12
Abstract ERRATUM
Journal Article

Parametric Studies on Airfoil-Boundary Layer Ingestion Propulsion System

2020-03-11
Abstract From the fact that a propulsor consumes less power for a given thrust if the inlet air is slower, simulations are conducted for a propulsor imposed behind an airfoil as ideal boundary layer ingestion (BLI) propulsor to stand on the benefits of this configuration from the point of view of power and efficiency and to get a closer look on the mutual interaction between them. This interaction is quantified by the impact on three main sets of parameters, namely, power consumption, boundary layer properties, and airfoil performance. The position and size of the propulsor have great influence on the flow around the airfoil. Parametric studies are carried out to understand their influence. BLI propulsor directly affects the power saving and all of the pressure-dependent parameters, including lift and drag. For the present case, power saving reached 14.4% compared to the propeller working in freestream.
Journal Article

Flight Performance Envelope for an Aircraft with a Fixed-Pitch Propeller

2021-07-14
Abstract A flight envelope for aircraft performance in the vertical plane illustrates the performance limitations on the aircraft, usually indicating the minimum and maximum airspeeds at a given altitude, the airspeeds for maximum rate of climb and maximum angle of climb at a given altitude, and the maximum altitude or absolute ceiling of the aircraft. This study outlines the procedure for constructing a vertical-plane flight performance aircraft for an aircraft with a fixed-pitch propeller, which involves additional complexities due to the variable propeller efficiency. The propeller performance, engine power, and drag polar models are described, as is the computational procedure. Envelopes for the flight performance in the vertical plane are presented for a particular remotely-piloted aircraft at different take-off weights.
Journal Article

Carbon Fiber/Epoxy Mold with Embedded Carbon Fiber Resistor Heater - Case Study

2018-04-07
Abstract The paper presents a complete description of the design and manufacturing of a Carbon Fiber/epoxy mold with an embedded Carbon Fiber resistor heater, and the mold performances in terms of its surface temperature distribution and thermal deformations resulting from the heating. The mold was designed for manufacturing aileron skins from Vacuum Bag Only prepreg cured at 135°C. The glass transition temperature of the used resin-hardener system was about 175°C. To ensure homogenous temperature of the mold working surface in the course of curing, the Carbon Fiber heater was embedded in a layer of a highly heat-conductive cristobalite/epoxy composite, forming the core of the mold shell. Because the cristobalite/epoxy composite displayed much higher thermal expansion than CF/epoxy did, thermal stresses could arise due to this discrepancy in the course of heating.
Standard

Special Considerations for the Application of IVHM to Autonomous Aircraft and Vehicles

2022-04-11
WIP
JA7214
This SAE Aerospace Recommended Practice (ARP) provides guidance to develop and assure validation and verification of IVHM systems used in autonomous aircraft, vehicles and driver assistance functions. IVHM covers a vehicle, monitoring and data processing functions inherent within its sub-systems, and the tools and processes used to manage and restore the vehicle’s health. The scope of this document is to address challenges and identify recommendations for the application of integrated vehicle health management (IVHM) specifically to intelligent systems performing tasks autonomously within the mobility sector. This document will focus on the core aspects of IVHM for autonomous vehicles that are common to both aerospace and automotive applications. It is anticipated that additional documents will be developed separately to cover aspects of this functionality that are unique to each application domain.
Standard

Nitrogen Absorption/Desorption (Gas Dissolution) in Aircraft Shock Absorbers

2019-04-18
WIP
AIR6942
This document outlines the current state of the art in the understanding of gas in solution in shock absorber oils in unseperated shock absorbers. A literature review, overview of Henry's law, Henry's law coefficients for known gas and oil couples, in-service operational problems, lessons learned, and potential future work will be discussed in the document.
Standard

Landing Gear Based Weight and Balance Systems

2019-04-18
WIP
AIR6941
This document outlines historical systems which have used the landing gear as a sensor or installation point for full aircraft weight and balance systems. A number of systems have been developed, installed, certified, and placed in service but few systems remain in regular use. The document will capture the history of these systems, reasons (where known) for their withdrawal from service, and lessons learned.
X