Refine Your Search

Topic

Search Results

Standard

Oxygen Sensor Technologies

2020-12-18
CURRENT
AIR5933
AIR5933 provides an overview of contemporary technologies (i.e., sensors) that measure the proportion of oxygen in a gas. The use of these sensors in the aerospace environment, with its special constraints, is discussed and papers/reports with detailed information are summarized and referenced. The sensors are divided into expendable and non-expendable sensors. Expendable sensors are based on electrochemical properties, whereas non-expendable sensors rely on paramagnetic, photo-acoustic, electromagnetic, and laser spectroscopy properties.
Standard

Portable Chemical Oxygen

2017-01-04
CURRENT
AS1303B
This SAE Aerospace Standard (AS) applies to a portable chemical oxygen generator assembly intended for the following uses: a First aid treatment of aircraft occupants after an emergency descent following a decompression or other emergency condition. b Use by cabin attendants to maintain their mobility after a decompression.
Standard

Useful Life Determination for Chemical Oxygen Generators

2013-12-13
HISTORICAL
ARP1894A
The scope of this document is to provide a guideline for the preparation of a plan for testing of inservice chemical oxygen generators to confirm their design useful life. The test program should also allow determination with a sufficient level of confidence, whether generators are suitable for further use (i.e., life extension, or if the useful life limit has been reached).
Standard

USEFUL LIFE DETERMINATION CHEMICAL OXYGEN GENERATORS

1987-02-01
HISTORICAL
ARP1894
This document provides recommended guidelines for a comprehensive program to determine the useful life of chemical oxygen generators where useful life is defined as the sum of shelf and service life. Further, this document provides for a test program to determine with a sufficient level of confidence if the generators are suitable for further use and/or if the life limit has been reached. This program should include testing of generators of a representative sampling of a given year's production, of a particular part number, to provide a level of confidence sufficient to permit the units to be used for an additional specified time period.
Standard

Useful Life Determination for Chemical Oxygen Generators

2014-02-13
CURRENT
ARP1894B
The scope of this document is to provide a guideline for the preparation of a plan for testing of inservice chemical oxygen generators to confirm their design useful life. The test program should also allow determination with a sufficient level of confidence, whether generators are suitable for further use (i.e., life extension, or if the useful life limit has been reached).
Standard

Oxygen Mask Assembly, Demand and Pressure Breathing, Crew

2014-10-16
CURRENT
AS452B
This standard covers both general type and quick-donning type mask assemblies in the following classes: a Class A, oronasal, demand b Class B, oronasal, pressure-demand c Class C, full face, demand d Class D, full face, pressure-demand
Standard

Oxygen Mask Assembly, Demand and Pressure Breathing, Crew

2003-10-15
HISTORICAL
AS452A
This standard covers both general type and quick-donning type mask assemblies in the following classes: a Class A, oronasal, demand b Class B, oronasal, pressure-demand c Class C, full face, demand d Class D, full face, pressure-demand
Standard

Closed-Cycle Protective Breathing Devices

2023-01-26
CURRENT
AIR825/11A
Closed-cycle protective breathing apparatus, commonly referred to as rebreathers, or CCBA provide trained aircrew members or ground personnel with eye and respiratory protection from toxic atmospheres.
Standard

Reducers, Oxygen Pressure

2009-11-30
HISTORICAL
AS17852
This specification covers the requirements for two types of oxygen pressure reducers.
Standard

HIGH PRESSURE OXYGEN SYSTEM FILLER VALVE

1971-07-30
HISTORICAL
AS1225
This AS covers oxygen filler valves for use in aircraft to ensure safe servicing of high pressure oxygen system cylinders. The intent is that the valve shall automatically control the rate of fill such that the temperature rise in the oxygen system caused by compression heating of the gas will be within acceptable limits. In addition, the valve shall have a pressure sensitive closing valve to automatically control the final pressure for a correct amount of oxygen in the system cylinder. The pressure closing level may be manually selected by means of adjustment dials on the valve.
Standard

Passenger Oxygen Mask

2021-08-11
CURRENT
AS8025A
This standard covers oronasal type masks which use a continuous flow oxygen supply. Each such mask comprises a facepiece with valves as required, a mask suspension device, a reservoir, or rebreather bag (when used), a length of tubing for connection to the oxygen supply source, and a means for allowing the crew to determine if oxygen is being delivered to the mask. The assembly shall be capable of being stowed suitably to meet the requirements of its intended use.
Standard

PASSENGER OXYGEN MASK

1993-12-01
HISTORICAL
AS8025
This standard covers oronasal type masks which use a continuous flow oxygen supply. Each such mask comprises a facepiece with valves as required, a mask suspension device, a reservoir, or rebreather bag (when used), a length of tubing for connection to the oxygen supply source, and a means for allowing the crew to determine if oxygen is being delivered to the mask. The assembly shall be capable of being stowed suitably to meet the requirements of its intended use.
Standard

MINIMUM GENERAL STANDARDS FOR OXYGEN SYSTEMS

1991-05-01
HISTORICAL
AS861
This standard covers all types of oxygen breathing equipment used in non-military aircraft. It is intended that this standard supplement the requirements of the detail specification or drawings of specific components or assemblies, e.g., regulators, masks, cylinders, etc. Where a conflict exists between this and detail specifications, detail specifications shall take precedence.
Standard

Minimum General Standards for Oxygen Systems

2006-04-27
HISTORICAL
AS861A
This standard covers all types of oxygen breathing equipment used in non-military aircraft. It is intended that this standard supplement the requirements of the detail specification or drawings of specific components or assemblies, e.g., regulators, masks, cylinders, etc. Where a conflict exists between this and detail specifications, detail specifications shall take precedence.
Standard

Minimum General Standards for Oxygen Systems

2023-05-10
CURRENT
AS861C
This standard covers all types of oxygen breathing equipment used in non-military aircraft. It is intended that this standard supplements the requirements of the detail specification or drawings of specific components or assemblies (e.g., regulators, masks, cylinders, etc.). Where a conflict exists between this standard and detail specifications, detail specifications shall take precedence.
Standard

Minimum General Standards for Oxygen Systems

2021-08-11
HISTORICAL
AS861B
This standard covers all types of oxygen breathing equipment used in non-military aircraft. It is intended that this standard supplement the requirements of the detail specification or drawings of specific components or assemblies, e.g., regulators, masks, cylinders, etc. Where a conflict exists between this and detail specifications, detail specifications shall take precedence.
Standard

Lubricants for Oxygen Use

2020-07-14
CURRENT
AIR4071A
This SAE Aerospace Information Report (AIR) describes two classes of lubricants which, when properly applied, can be used in oxygen systems and components.
Standard

Oxygen Cylinder Installation Guide

2005-10-24
HISTORICAL
ARP5021
This document provides guidance for oxygen cylinder installation on commercial aircraft based on rules and methods practiced in aerospace industry and as far as applicable in other associations. It covers considerations to be taken for oxygen systems from beginning of project phase up to production, maintenance, and servicing. The document is focused on requirements regarding DOT approved oxygen cylinders. However, its basic rules may also be applicable to new development pertaining to use of such equipment in an oxygen environment. For information regarding oxygen cylinders itself, reference should be made to AIR825/12 also.
X