Refine Your Search

Search Results

Standard

THE MEASUREMENT OF PASSENGER CAR TIRE ROLLING RESISTANCE

1984-06-01
HISTORICAL
J1270_198406
The force, torque, and power methods of measurement are all in common use and should yield the same test results. Effects of steering, traction, and non-steady-state tire operations are excluded from the recommended practice because they are still in the research stage.
Standard

THE MEASUREMENT OF PASSENGER AND LIGHT TRUCK ROLLING RESISTANCE

1985-11-01
HISTORICAL
J1270_198511
The force, torque, and power methods of measurement are all in common use and should yield the same test results. Effects of steering, traction, surface texture, and non-steady-state tire operations are excluded from the Recommended Practice because they are still in the research stage.
Standard

METHODS FOR TESTING SNAP-IN TUBELESS TIRE VALVES

1997-04-01
HISTORICAL
J1206_199704
This SAE Standard contains recommended test methods for snap-in tubeless tire valves intended for, but not limited to, highway applications. A snap-in valve is a tire valve having a rigid housing adhered to a resilient body designed to retain and seal the valve in the rim hole.
Standard

Methods for Testing Snap-In Tubeless Tire Valves

2018-01-19
CURRENT
J1206_201801
This SAE Standard contains recommended test methods for snap-in tubeless tire valves intended for, but not limited to, highway applications. A snap-in valve is a tire valve having a rigid housing adhered to a resilient body designed to retain and seal the valve in the rim hole.
Standard

TESTING MACHINES FOR MEASURING THE UNIFORMITY OF PASSENGER CAR TIRES

1969-01-01
HISTORICAL
J332_196901
In recent years the comfort and fatigue of passengers in vehicles has become a major engineering consideration. Among the many factors involved are vibratory and auditory disturbances. Tires participate, among other elements of the vehicle, in exciting vibrations and noises. Furthermore, tires also may generate forces leading to lateral drift of the vehicle. This recommended practice describes the design requirements of equipment for evaluating some of the characteristic excitations of passenger tires causing disturbances in vehicles. The kinds of excitations treated result from nonuniformities in the structure of the tire and have their effect when a vehicle bearing the tire travels on a smooth road. This recommended practice also describes some broad aspects of the use of the equipment and lists precautionary measures that have arisen out of current experience.
Standard

TESTING MACHINES FOR MEASURING THE UNIFORMITY OF PASSENGER CAR AND LIGHT TRUCK TIRES

1981-08-01
HISTORICAL
J332_198108
In recent years the comfort and fatigue of passengers in vehicles has become a major engineering consideration. Among the many factors involved are vibratory and auditory disturbances. Tires participate, among other elements of the vehicle, in exciting vibrations and noises. Furthermore, tires also may generate forces leading to lateral drift of the vehicle. This recommended practice describes the design requirements of equipment for evaluating some of the characteristic excitations of passenger car and light truck tires which may cause disturbance in vehicles. The kinds of excitations treated result from nonuniformities in the structure of the tire and have their effect when a vehicle bearing the tire travels on a smooth road. This recommended practice also describes some broad aspects of the use of the equipment and lists precautionary measures that have arisen out of current experience.
Standard

Testing Machines for Measuring the Uniformity of Passenger Car and Light Truck Tires

2020-03-11
CURRENT
J332_202003
The comfort and fatigue of vehicle passengers is a major engineering consideration. Among the many factors involved are vibratory and auditory disturbances. Tires participate, among other elements of the vehicle, in exciting vibrations and noises. Furthermore, tires also may generate forces leading to lateral drift of the vehicle. This SAE Recommended Practice describes the design requirements for equipment to evaluate some of the characteristic excitations of passenger car and light truck tires which may cause disturbance in vehicles. The kinds of excitations treated result from nonuniformities in the structure of the tire and have their effect when a vehicle bearing the tire travels on a smooth road. This document also describes some broad aspects of the use of the equipment and lists precautionary measures that have arisen out of current experience. The intention underlying these recommendations is to establish a standardized measurement for use by the engineering community.
Standard

ROLLING RESISTANCE MEASUREMENT PROCEDURE FOR PASSENGER CAR TIRES

1984-06-01
HISTORICAL
J1269_198406
This recommended practice applies to the laboratory measurement of rolling resistance of pneumatic passenger car tires designed primarily for normal highway service. The procedure applies only to the steady-state operation of free-rolling tires at zero slip and inclination angles; it includes the following three basic methods:
Standard

ROLLING RESISTANCE MEASUREMENT PROCEDURE FOR PASSENGER CAR AND LIGHT TRUCK TIRES

1985-11-01
HISTORICAL
J1269_198511
This Recommended Practice applies to the laboratory measurement of rolling resistance of pneumatic passenger car and light truck tires. The procedure applies only to the steady-state operation of free-rolling tires at zero slip and inclination angles; it includes the following three basic methods:
Standard

Wet or Dry Pavement Passenger Car Tire Peak and Locked Wheel Braking Traction

2018-02-15
CURRENT
J345_201802
This SAE Recommended Practice defines the best known techniques for evaluating peak and locked wheel braking traction. It covers an important phase of tire braking traction, namely, the wet or dry pavement straight ahead conditions. However, this is but a small portion of the whole field of tire traction. As test procedures are established for other phases of this complex study, additional supplementary procedures will be written. A discussion of this entire subject is contained in Appendix B to this recommended practice.
Standard

WET OR DRY PAVEMENT PASSENGER CAR TIRE PEAK AND LOCKED WHEEL BRAKING TRACTION

1968-06-01
HISTORICAL
J345_196806
This SAE Recommended Practice defines the best known techniques for evaluating peak and locked wheel braking traction. It covers an important phase of tire braking traction, namely, the wet or dry pavement straight ahead conditions. However, this is but a small portion of the whole field of tire traction. As test procedures are established for other phases of this complex study, additional supplementary procedures will be written. A discussion of this entire subject is contained in Appendix B to this recommended practice.
Standard

WET OR DRY PAVEMENT PASSENGER CAR TIRE PEAK AND LOCKED WHEEL BRAKING TRACTION

1969-03-01
HISTORICAL
J345_196903
This SAE Recommended Practice defines the best known techniques for evaluating peak and locked wheel braking traction. It covers an important phase of tire braking traction, namely, the wet or dry pavement straight ahead conditions. However, this is but a small portion of the whole field of tire traction. As test procedures are established for other phases of this complex study, additional supplementary procedures will be written. A discussion of this entire subject is contained in Appendix B to this recommended practice.
Standard

WET OR DRY PAVEMENT PASSENGER CAR TIRE PEAK AND LOCKED WHEEL BRAKING TRACTION

1969-03-01
HISTORICAL
J345A_196903
This SAE Recommended Practice defines the best known techniques for evaluating peak and locked wheel braking traction. It covers an important phase of tire braking traction, namely, the wet or dry pavement straight ahead conditions. However, this is but a small portion of the whole field of tire traction. As test procedures are established for other phases of this complex study, additional supplementary procedures will be written. A discussion of this entire subject is contained in Appendix B to this recommended practice.
X