Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Fundamentals of Fatigue Analysis

Fatigue is a structural failure mode that must be recognized and understood to develop products that meet life cycle durability requirements. In the age of lightweighting, fatigue strength is an important vehicle design requirement as engineers struggle to meet stringent weight constraints without adversely impacting durability. This technical concept course introduces the fatigue failure mode and analysis methods. It explains the physics of material fatigue, including damage accumulation that may progress to product failure over time, and it provides the needed foundation to develop effective fatigue prediction capabilities.
Technical Paper

Design Analysis of High Power Density Additively Manufactured Induction Motor

2016-09-20
2016-01-2061
Induction machines (IM) are considered work horse for industrial applications due to their rugged, reliable and inexpensive nature; however, their low power density restricts their use in volume and weight limited environments such as an aerospace, traction and propulsion applications. Given recent advancements in additive manufacturing technologies, this paper presents opportunity to improve power density of induction machines by taking advantage of higher slot fill factor (SFF) (defined as ratio of bare copper area to slot area) is explored. Increase in SFF is achieved by deposition of copper in much more compact way than conventional manufacturing methods of winding in electrical machines. Thus a design tradeoff study for an induction motor with improved SFF is essential to identify and highlight the potentials of IM for high power density applications and is elaborated in this paper.
Video

Real-time Tire Imbalance Detection Using ABS Wheel Speed Sensors

2011-11-15
This presentation proposes an approach to use ABS wheel speed sensor signals together with other vehicle state information from a brake control module to detect an unbalanced tire or tires in real-time. The proposed approach consists of two-stage algorithms that mix a qualitative method using band-pass filtering with a quantitative parameter identification using conditional least squares. This two-stage approach can improve the robustness of tire imbalance or imbalances. The proposed approach is verified through vehicle testing and the test results show the effectiveness of the approach. Presenter Jianbo Lu, Ford Motor Co.
Video

The Benefits of Hybrid Electric Drive for Military Operations

2012-03-27
Hybrid Electric Drive (HED) provides the potential to improve military vehicle capabilities beyond the well understood fuel economy benefits. Additional HED benefits for military operations can be realized in the areas of mobility, survivability, lethality, power generation and maintainability. General Dynamics Land Systems (GDLS) continues to demonstrate significant advantages that HED can offer to military vehicle platforms. This presentation will focus on the advanced military capabilities provided by HED utilizing in-hub wheel motors and include a summary of GDLS demonstrator vehicles with integrated HED. Presenter Andrew Silveri, GENERAL DYNAMICS LAND SYST
Video

Monitoring the Progression of Micro-Pitting in Spur Geared Transmission Systems Using Online Health Monitoring Techniques

2012-03-16
Micro-pitting is a fatigue effect that occurs in geared transmission systems due to high contact stress, and monitoring its progression is vital to prevent the eventual failure of the tooth flank. Parameter signature analysis has been successfully used to monitor bending fatigue failure and advanced phases of gear surface fatigue failure such as macro-pitting and scuffing. However, due to modern improvements in steel production the main cause of gear contact fatigue failure can be attributed to surface micro-pitting rather than sub-surface phenomena. Responding to the consequent demand to detect and monitor the progression of micro-pitting, this study experimentally evaluated the development of micro-pitting in spur gears using vibration and oil debris analysis. The paper presents the development of an online health monitoring system for use with back-to-back gear test rigs.
Video

Development of Scratch Resistant Clear Coat for Automotive

2012-05-23
Scratch resistance is one of the most important customer requirements for automotive painting. Scratches occur as a result of a load being imposed on a paint film, which then destroys or deforms it. In order to improve the scratch resistance properties of clear coat, a specially developed molecular that act to accelerate closslinking reaction was added to the clear coat main resin. This developed molecular facilitates closslinking between multiple molecules and creates an unprecedentedly fine molecular structure. The result is a soft, highly elastic, and durable clear coat with improved resistance to light and acid as well as enhanced deformation recovery properties. It requires no special maintenance, prevents luster degradation caused by surface scratches and helps to prolong new-car color and gloss. Developmental Clear Coat is introduced into the flagship of the Lexus range - the LS as Self-restoring Coat in 2009. Presenter Junya Ogawa, Developmental Center
Collection

Fatigue Research and Applications, 2014

2014-04-01
This technical paper collection covers recent fatigue research, analysis, analytical tools development, and novel applications of fatigue technology in the ground vehicle industry.
Collection

Fatigue Modeling/Testing & CAE Durability Analysis, 2015

2015-04-14
This collection of technical papers focuses on state-of-the-art fatigue theory and advanced development in fatigue testing, material behavior under cyclic loading, and fatigue analysis methodology & research in the ground vehicle industry.
Collection

Fatigue Modeling/Testing & CAE Durability Analysis, 2017

2017-03-28
This collection of papers focus on state-of-the-art fatigue theory and advanced development in fatigue testing, material behavior under cyclic loading, and fatigue analysis methodology & research in the ground vehicle industry. Studies and discussions on innovative and improved fatigue theory/methods in will be discussed along with and engineering applications of CAE durability analysis.
Collection

Tire and Wheel Technology, 2015

2015-04-14
Topics of this technical paper collection include (but are not limited to) nonlinear behavior of tires and wheels, static/dynamic stress analysis, nonlinear material modeling, contact stress, impact, noise, vibration, traction, hydroplaning, effect of tires on vehicle performance, rolling resistance, and durability.
Collection

Exhaust Emissions Control & System Integration and Durability, 2019

2019-04-02
Papers in this collection focus on technology developments and the integration of these technologies into new emission control systems. Topics include the integration of various diesel particulate matter (PM) and diesel Nitrogen Oxide (NOx) reduction technologies plus analogous technologies for the growing population of direct injection gasoline engines. Novel developments in sensors and control systems will also be considered. This collection encompasses studies in the area of exhaust aftertreatment integration and durability. Topics of interest include detailed studies on the caveats of aftertreatement system design, integration and performance. Other topics of interest include studies documenting the challenges and solutions related to durability and robustness of catalytic solutions.
Journal Article

Experimental Investigation of the Near Wall Flow Downstream of a Passenger Car Wheel Arch

2018-03-01
Abstract The flow around and downstream of the front wheels of passenger cars is highly complex and characterized by flow structure interactions between the external flow, fluid exiting through the wheelhouse, flow from the engine bay and the underbody. In the present paper the near wall flow downstream of the front wheel house is analyzed, combining two traditional methods. A tuft visualization method is used to obtain the limiting streamline pattern and information about the near wall flow direction. Additionally, time resolved surface pressure measurements are used to study the pressure distribution and the standard deviation. The propagation of the occurring flow structures is investigated by cross correlations of the pressure signal and a spectral analysis provides the characteristic frequencies of the investigated flow.
Journal Article

Thermo-Mechanical Coupled Analysis-Based Design of Ventilated Brake Disc Using Genetic Algorithm and Particle Swarm Optimization

2021-08-24
Abstract The brake discs are subjected to thermal load due to sliding by the brake pad and fluctuating loads because of the braking load. This combined loading problem requires simulation using coupled thermo-mechanical analysis for design evaluation. This work presents a combined thermal and mechanical finite element analysis (FEA) and evolutionary optimization-based novel approach for estimating the optimal design parameters of the ventilated brake disc. Five parameters controlling the design: inboard plate thickness, outboard plate thickness, vane height, effective offset, and center hole radius were considered, and simulation runs were planned. A total of 27 brake disc designs with design parameters as recommended by the Taguchi method (L27) were modeled using SolidWorks, and the FEA simulation runs were carried out using the ANSYS thermal and structural analysis tool.
Journal Article

Effect of Spoke Design and Material Nonlinearity on Non-Pneumatic Tire Stiffness and Durability Performance

2021-08-06
Abstract The non-pneumatic tire (NPT) has been widely used due to its advantages of no run-flat, no need for air maintenance, low rolling resistance, and improvement of passenger comfort due to its better shock absorption. It has a variety of applications in military vehicles, earthmovers, the lunar rover, stair-climbing vehicles, etc. Recently, the Unique Puncture-Proof Tire System (UPTIS) NPT has been introduced for passenger vehicles. In this study, three different design configurations, viz., Tweel, Honeycomb, and newly developed UPTIS, have been compared. The effect of polyurethane (PU) material nonlinearity has also been introduced by applying five different nonlinear PU material properties in the spokes. The combined analysis of the PU material nonlinearity and spoke design configuration on the overall tire stiffness and spoke damage prediction is done using three-dimensional (3D) finite element modelling (FEM) simulations performed in ANSYS 16.0.
Journal Article

Simulation of the Steering System Power Demand during the Concept Phase Focusing on Tire Modelling at Standstill

2021-11-09
Abstract Estimating the power demand of a steering system is one of the main tasks during steering system development in the concept phase of a vehicle development process. Most critical for typical axle kinematics are parking maneuvers with simultaneously high rack forces and velocities. Therefore, the focus of the article is a tire model for standstill, which can be parametrized without measurements, only having tire dimensions and conditions (inflation pressure and wheel load) as input. Combined with a double-track model, a vehicle model is developed, which is able to predict the rack force and is fully applicable during the concept phase. The article demonstrates quantitatively that the tie rod forces, and thereby especially the tire bore torque, cause the largest fraction of the power demand at the rack. For this reason, the prediction of the bore torque is investigated in detail, whereby basic approaches from the literature are analyzed and enhanced.
Journal Article

Vibration Response Properties in Frame Hanging Catalyst Muffler

2018-07-24
Abstract Dynamic stresses exist in parts of a catalyst muffler caused by the vibration of a moving vehicle, and it is important to clarify and predict the vibration response properties for preventing fatigue failures. Assuming a vibration isolating installation in the vehicle frame, the vibration transmissibility and local dynamic stress of the catalyst muffler were examined through a vibration machine. Based on the measured data and by systematically taking vibration theories into consideration, a new prediction method of the vibration modes and parameters was proposed that takes account of vibration isolating and damping. A lumped vibration model with the six-element and one mass point was set up, and the vibration response parameters were analyzed accurately from equations of motion. In the vibration test, resonance peaks from the hanging bracket, rubber bush, and muffler parts were confirmed in three excitation drives, and local stress peaks were coordinate with them as well.
Journal Article

Improving Multi-Axle Vehicle Steering Coordination Performance Based on the Concept of Instantaneous Wheel Turn Center

2019-03-14
Abstract A new concept of instantaneous wheel turn center (IWTC) is proposed to evaluate and improve multi-axle vehicle steering coordination performance. The concept of IWTC and its calculation method are studied. The index named dispersion of IWTC is developed to evaluate the vehicle steering coordination performance quantitatively. The simulation tests based on a three-axle off-road vehicle model are conducted under different vehicle velocities and lateral accelerations. The simulation results show that the turn centers of different wheels are disperse, and the dispersion becomes larger with the increase of vehicle velocities and lateral acceleration. Since suspension has important influences on vehicle steering performance, the genetic algorithm is used to optimize the suspension hard points and bushing stiffness, aiming at minimizing the dispersion of wheel turn centers (DWTC) to improve the vehicle steering coordination performance.
Journal Article

Fatigue Evaluation of Multi-Degree of Freedom, Frequency Domain, Stochastic, Truck Road Load Models

2019-02-11
Abstract A number of semi-deterministic and stochastic formulations of multi-degree of freedom, frequency domain load models for heavy truck chassis are proposed and evaluated. The semi-deterministic models aim at reproducing the damage of a specific vehicle, while the stochastic ones aim to describe a collection of vehicle loads. The stochastic models are divided into two groups: Monte Carlo based and models based on single spectrum matrices. In both cases, the objective is to provide a load model that may be used to produce a design with a certain probability of survival. The goodness of the models is evaluated through a comparison of their damage outcomes with the corresponding damages of a set of time domain loads. This original time domain load set consists of chassis accelerations collected from seven physical trucks.
X