Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Assessment of the Accuracy of Certain Reduced Order Models used in the Prediction of Occupant Injury during Under-Body Blast Events

2014-04-01
2014-01-0752
It is of considerable interest to developers of military vehicles, in early phases of the concept design process as well as in Analysis of Alternatives (AoA) phase, to quickly predict occupant injury risk due to under-body blast loading. The most common occupant injuries in these extremely short duration events arise out of the very high vertical acceleration of vehicle due to its close proximity to hot high pressure gases from the blast. In a prior study [16], an extensive parametric study was conducted in a systematic manner so as to create look-up tables or automated software tools that decision-makers can use to quickly estimate the different injury responses for both stroking and non-stroking seat systems in terms of a suitable blast load parameter. The primary objective of this paper is to quantitatively evaluate the accuracy of using such a tool in lieu of building a detailed model for simulation and occupant injury assessment.
Technical Paper

Rapid CAE Analysis from Parametric Solid Model Assemblies of Instrument Panel Structures

1998-02-23
980388
During the conceptual design stages of an instrument panel (IP) structure, various alternatives in architecture need to be evaluated. This entails being able to obtain a quick assessment of how the designs roughly compare in structural performance. The current climate of reduced cycle times dictates that quick and inexpensive CAE techniques be employed for this purpose. This paper describes the background of a design process in which Computer Aided Engineering (CAE) models, fully associative with the underlying 3D solid model, are rapidly generated for use in structural vibration, thermal and crash analysis.
Technical Paper

Reduction of Instrument Panel Manufacturing Cost by Using Design Optimization

1998-09-29
982370
This paper highlights the application of design optimization in reducing product manufacturing cost without compromising product performance. By using a topology optimization method, the manufacturing cost of a clam shell has been reduced by approximately one-third, while maintaining the NVH performance of the steering column that is connected to the instrument panel (IP) through the clam shell. Two different optimization approaches and two different topological weld deployments are investigated. It is found that a fully-deployed seam weld approach with automatic optimization provides the best design results.
Technical Paper

Occupant Knee Impact Simulations: A Parametric Study

2003-03-03
2003-01-1168
Occupant knee impact simulations are performed in the automotive industry as an integrated design process during the course of instrument panel (IP) development. All major automakers have different categories of dynamic testing methods as part of their design process in validating their designs against the FMVSS 208 requirement. This has given rise to a corresponding number of knee impact simulations performed at various stages of product development. This paper investigates the advantages and disadvantages of various types of these knee impact simulations. Only the knee load requirement portion of the FMVSS208 is considered in this paper.
Technical Paper

Automating Instrument Panel Head Impact Simulation

2005-04-11
2005-01-1221
Occupant head impact simulations on automotive instrument panels (IP) are routinely performed as part of an integrated design process during the course of IP development. Based on the requirements (F/CMVSS, ECE), head impact zones on the IP are first established, which are then used to determine the various “hit” locations to be tested/analyzed. Once critical impact locations are identified, CAE simulations performed which is a repetitive process that involves computing impact angles, positioning the rigid head form with an assigned initial velocity and defining suitable contacts within the finite element model. A commercially available CAE process automation tool was used to automate these steps and generate a head impact simulation model. Once the input model is checked for errors by the automated process, it can be submitted to a solver without any user intervention for analysis and report generation.
Technical Paper

Using CAE to Guide Material Selection Process in Automotive Interior Applications

1999-09-28
1999-01-3177
The increased focus on cost reduction remains one of the major interests of the global automotive industry in general and of interior systems suppliers in particular. This emphasis is heightened due to globalization and expansion of automotive OEMs in their product line, so that they may participate and compete in lower priced niche markets. The cost of plastic components in the automotive interior is about $500 per vehicle, of which a significant portion is material cost alone. Low cost materials hitherto not considered traditional autoplastics are making inroads due to the advancements in the interior component manufacturing technology. This paper describes the process of material selection for IPs using Computer Aided Engineering (CAE) tools to evaluate their functional requirements, such as noise vibration and harshness (NVH), sunload deformations, and safety performance.
X