Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Impact of Waste Processing Options on System Closure and Mission ESM

2002-07-15
2002-01-2519
The technology selected for waste processing has a major effect on system closure and mission equivalent system mass (ESM). In particular, recovery of the water content of solid waste can make the difference between a mission being water poor and water rich. Potential alternative sources of water that need to be considered would include recovery of water from carbon dioxide reduction, and in situ resources. This paper looks at a range of waste-processing scenarios and calculated system ESM impacts related to these options. The lowest ESM approach is generally storage or dumping. However, other issues also need to be considered. Processing may be driven by requirements such as the need to recover commodities like water, prevent release of toxic gases into the spacecraft environment, planetary protection requirements, and interface loads.
Technical Paper

Systems Analysis of Life Support for Long-Duration Missions

2000-07-10
2000-01-2394
Work defining advanced life support (ALS) technologies and evaluating their applicability to various long-duration missions has continued. Time-dependent and time-invariant costs have been estimated for a variety of life support technology options, including International Space Station (ISS) environmental control and life support systems (ECLSS) technologies and improved options under development by the ALS Project. These advanced options include physicochemical (PC) and bioregenerative (BIO) technologies, and may in the future include in-situ-resource utilization (ISRU) in an attempt to reduce both logistics costs and dependence on supply from Earth. PC and bioregenerative technologies both provide possibilities for reducing mission equivalent system mass (ESM). PC technologies are most advantageous for missions of up to several years in length, while bioregenerative options are most appropriate for longer missions. ISRU can be synergistic with both PC and bioregenerative options.
X