Refine Your Search

Topic

Search Results

Technical Paper

Analytical Methodology for the Prediction of the Wear of Damper Springs in Dry Friction Clutches

2021-09-22
2021-26-0384
Coil springs are crucial components of the clutch damper. Quantifying the stresses accumulated on them during operation is crucial in the prediction of remaining usable spring life. This paper demonstrates the use of a mathematical model-based approach in predicting the behavior of localized stresses on the spring used in clutch dampers. An equivalent cantilever beam model for spring coils solved using the theory of elastic stability is utilized to predict the spring response in operation, a contact model that translates the spring response into localized stresses due to wear and iterative wear model that accounts for surface morphology and change in geometry due to wear is illustrated in this paper for the prediction of wear.
Journal Article

An Engine and Powertrain Mapping Approach for Simulation of Vehicle CO2 Emissions

2015-09-29
2015-01-2777
Simulations used to estimate carbon dioxide (CO2) emissions and fuel consumption of medium- and heavy-duty vehicles over prescribed drive cycles often employ engine fuel maps consisting of engine measurements at numerous steady-state operating conditions. However, simulating the engine in this way has limitations as engine controls become more complex, particularly when attempting to use steady-state measurements to represent transient operation. This paper explores an alternative approach to vehicle simulation that uses a “cycle average” engine map rather than a steady state engine fuel map. The map contains engine CO2 values measured on an engine dynamometer on cycles derived from vehicle drive cycles for a range of generic vehicles. A similar cycle average mapping approach is developed for a powertrain (engine and transmission) in order to show the specific CO2 improvements due to powertrain optimization that would not be recognized in other approaches.
Journal Article

Robust Design of Spiral Groove Journal Bearing

2016-01-05
2015-01-9087
Journal bearings are machine elements designed to produce smooth (low friction) motion between solid surfaces in relative motion and to generate a load support for mechanical components. In a Journal bearing, the entire load is carried by a thin film of fluid present between the rotating and the non-rotating elements. The thickness of the film is very sensitive to ambient temperature, radial clearance and misalignment. Though these parameters are difficult to control, it is important to consider these as noises while designing the Journal bearing. When noises in the design space are very strong, the conventional DOE and RSM methods suppress the effect of control factors and render them irrelevant in the design process. This leads to overdesigning the product, which in turn adds more cost. The main objective of this work is to design a bearing, which is insensitive to noises at each stage of the product life cycle.
Journal Article

Real World Duty Cycle Development Method for Non-road Mobile Machinery (NRMM)

2016-09-27
2016-01-8118
Emission, fuel economy and productivity in non-road mobile machinery (NRMM) depend largely on drive cycles. Understanding drive cycles can provide the in-depth information and knowledge that help the system integrator better optimize the vehicle management system. Some non-road engine test cycles already exist nowadays. However, these cycles are mainly for engine emission regulation purpose, and not closely tied to real world applications. Therefore, from both industries and academia, it has been the common practice to instrument and retrofit a vehicle, assign a professional driver operate the retrofitted vehicle for real testing, and compare the results to the baseline vehicle under the similar operating conditions. Obviously this approach is time consuming and resource intensive. In this paper, we attempt to address this issue by introducing a method of constructing standard drive cycles from in-field operation data.
Journal Article

Vehicle Level Parameter Sensitivity Studies for a 1.5L Diesel Engine Powered Passenger Car with Various Boosting Systems

2015-04-14
2015-01-0982
Several diesel passenger car boosting systems were studied to assess their impact on vehicle performance and fuel economy. A baseline 1.5L diesel engine model with a single VGT turbocharger was obtained through Gamma Technologies' fast running model library. This model was modified to explore multiple two stage boosting systems to represent the anticipated architecture of future engines. A series sequential turbocharged configuration and a series turbocharger-supercharger configuration were evaluated. The torque curves were increased from that of the original engine model to take advantage of the increased performance offered by two stage boosting. The peak cylinder pressure for all models was limited to 180 bar. Drive cycle analysis over the WLTP was performed using these engine architectures, while assessing the sensitivity to various system parameters. These parameters include: vehicle weight and aerodynamic drag, EGR target maps, level of downspeeding, and turbocharger inertia.
Technical Paper

Experimental Study of Aluminum Metal Foam Material on Heat Transfer Performance

2021-09-22
2021-26-0239
Electrification is one of the megatrends across the industries, like electric vehicles, electric aircraft, etc. which needs advancement in power electronics component technology. As technology advances in miniaturization of power electronics, thermal-management issues threaten to limit the performance of these devices. These may force designers to derate the device performance and ultimately these compromise in design may increase the size & weight of the application. One of the technologies capable of accomplishing these goals employs a class of materials know as metal foam. Metal foams are lightweight cellular materials inspired by nature. The main application of metal foams can be grouped into structural and functional and are based on several excellent properties of the material. Structural applications take advantage of the light-weight and specific mechanical properties of metal foam.
Technical Paper

Improving Brake Thermal Efficiency Using High-Efficiency Turbo and EGR Pump While Meeting 2027 Emissions

2021-09-21
2021-01-1154
Commercial vehicles are moving in the direction of improving brake thermal efficiency while also meeting future diesel emission requirements. This study is focused on improving efficiency by replacing the variable geometry turbine (VGT) turbocharger with a high-efficiency fixed geometry turbocharger. Engine-out (EO) NOX emissions are maintained by providing the required amount of exhaust gas recirculation (EGR) using a 48 V motor driven EGR pump downstream of the EGR cooler. This engine is also equipped with cylinder deactivation (CDA) hardware such that the engine can be optimized at low load operation using the combination of the high-efficiency turbocharger, EGR pump and CDA. The exhaust aftertreatment system has been shown to meet 2027 emissions using the baseline engine hardware as it includes a close coupled light-off SCR followed by a downstream SCR system.
Technical Paper

Improved Techniques in Intake Acoustic System Modeling of a Supercharged Engine

2017-06-05
2017-01-1790
Vehicle noise emission requirements are becoming more stringent each passing year. Pass-by noise requirement for passenger vehicles is now 74 dB (A) in some parts of the world. The common focus areas for noise treatment in the vehicle are primarily on three sub-systems i.e., engine compartment, exhaust systems and power train systems. Down- sizing and down- speeding of engines, without compromising on power output, has meant use of boosting technologies that have produced challenges in order to design low-noise intake systems which minimize losses and also meet today’s vehicle emission regulations. In a boosted system, there are a variety of potential noise sources in the intake system. Thus an understanding of the noise source strength in each component of the intake system is needed. One such boosting system consists of Turbo-Super configuration with various components, including an air box, supercharger, an outlet manifold, and an intercooler.
Technical Paper

Dynamic Analysis of Helical Gear Pair Due to TE and Shuttling Moment Excitations

2017-06-05
2017-01-1818
Helical gears are commonly used instead of spur gears due to their potential higher load carrying capacity, efficiency and lower noise. Transmission Error (TE) is defined as deviation from perfect motion transfer by a gear pair. TE is dominant source of gear whine noise and hence gears pairs are generally analyzed and designed for low TE. In the process of designing helical gears for lower TE, the shuttling moment can become a significant excitation source. Shuttling moment is caused due to shifting of the centroid of tooth normal force back and forth across the lead. The amount of shuttling force or moment is produced by combination of design parameters, misalignment and manufacturing errors. Limited details are available on this excitation and its effect on overall noise radiated from gear box or transmission at its gear mesh frequency and harmonics.
Technical Paper

Cold Spray Repair Process Optimization Through Development of Particle Impact Velocity Prediction Methodology

2022-10-05
2022-28-0098
Cold spray (CS) is a rapidly developing solid-state repair and coating process, wherein metal deposition is produced without significant heating or melting of metal powder. Solid state bonding of powder particles is produced by impact of high-velocity powder particles on a substrate. In CS process, metal powder particles typically of Aluminum or Copper are suspended in light weight carrier gas medium. Here high pressure and high temperature carrier gas is expanded through a converging-diverging nozzle to generate supersonic gas velocity at nozzle exit. The CS process typically uses Helium as the carrier gas due to its low molecular weight, but Helium gas is quite expensive. This warrants a need to explore alternate carrier gases to make the CS repair process more economical. Researchers are exploring another viable option of using pure Nitrogen as a carrier gas due to its significant cost benefits over Helium.
Technical Paper

Better performance in fine-grain steel for transmission

2023-02-10
2022-36-0033
Manual transmissions for passenger cars are facing pressures due to rapid growth of automatic transmissions, which already represents more than 60% of Brazil market, and from higher torque demand due to strict emission legislation, which turbo engines had presented great contribution to it. To solve this contradictory issue, gears with higher strength and lower cost have been studied to replacement Nickel by Niobium in the steels. Furthermore, this technology could be applied to solve the issues with electrified vehicle, where high torque, speed and lifetime are demanded pursued for gears. This study aimed to build prototypes and compare the S-N curves, fracture analysis, microstructure for three kinds of steels (QS4321 with Ni, QS1916 FG without Ni & with Nb and QS 1916 without Ni and Nb) in the condition carburized, hardened and tempered with and without shot peening.
Technical Paper

Design and Development of a Roller Follower Hydraulic Lash Adjustor to Eliminate Lash Adjustment and Reduce Noise in a Serial Production Diesel Engine

2018-09-10
2018-01-1766
Commercial vehicles require continual improvements in order to meet fuel emission standards, improve diesel aftertreatment system performance and optimize vehicle fuel economy. Aftertreatment systems require significant space claim which makes vehicle packaging a challenge. Today’s diesel engines require valvetrain lash adjustment settings at distinct intervals to ensure proper valvetrain performance. This requires removing the engine rocker cover to access the valvetrain rocker arms for setting lash. Setting lash for compact vehicle applications sometimes requires removing the aftertreatment system to provide access to the rocker cover prior to setting lash. Then, the rocker cover is reinstalled followed by the aftertreatment system making the lash setting process time consuming and complex.
Technical Paper

Non-Destructive Evaluation for High-Pressure Composite Tubes using a Hybrid Approach

2019-04-02
2019-01-1268
Recently, composite materials/structures are getting increasingly used in the automotive and aerospace industry. Defects issue is commonly associated with the use of composite materials/structures. Reliable Non-Destructive Evaluation (NDE) of composite structures is still challenging due to the existence of small size defects. In this research, a hybrid approach is used to accurately determine small size internal defects. In this hybrid approach, X-Ray Computed Tomography is used as a reference to accurately determine all defect locations, then a digital shearography method is used to conduct fast NDE for in-line testing. The critical shearographic NDE parameters such as shearing angle, shearing distance and loading amount are determined and optimized based on the X-ray CT scan result. From the comparison of X-ray CT scan results and digital shearography NDE results, the detection rate of digital shearography for defects with a size of larger than 1mm is from 91.91% to 97.30%.
Technical Paper

Development of Representative Vehicle Drive Cycles for Hybrid Applications

2014-04-01
2014-01-1900
Computer simulation is commonly used to determine the impact of hybrid vehicle technology on fuel economy and performance. One input required for this approach is a drive cycle that represents the desired vehicle speed at each time step in the simulation. Due to computational hardware limitations, simulated drive cycle durations are required to be shorter than those actually driven by real vehicles. Hence there is a need to develop a representative drive cycle of smaller time duration. For example, it is desirable to develop a one hour drive cycle that can give the same fuel economy and performance results as a drive cycle spanning many weeks. Specifically for the design of hybrid systems, it is desired that certain characteristics of micro-trips within the full length cycle are well replicated in the representative cycle. Taking these requirements into account, a new methodology was developed and tested. This paper explains this methodology and the final results obtained.
Technical Paper

Durability and Reliability Demonstration for Switching Roller Finger Follower in Cylinder Deactivation Systems

2015-09-29
2015-01-2816
Cylinder deactivation (CDA) is an effective method to adjust the engine displacement for maximum output and improve fuel economy by adjusting the number of active cylinders in combustion engines. A Switching Roller Finger Follower (SRFF) is an economic solution for CDA that minimizes changes and preserves the overall width, height, or length of Dual Overhead Cam (DOHC) engines. The CDA SRFF provides the flexibility of either transferring or suppressing the camshaft movement to the valves influencing the engine performance and fuel economy by reducing the pumping losses. This paper addresses the performance and durability of the CDA SRFF system to meet the reliability for gasoline passenger car engines. Extensive tests were conducted to demonstrate the dynamic stability at high engine speeds and the system capacity of switching between high and low engine displacement within one camshaft revolution.
Technical Paper

Analysis of Hybrid Heavy Duty Powertrains for Commercial Vehicles in the Face of Advanced Vehicle and Exhaust Energy Recovery Technologies

2014-04-01
2014-01-1808
New regulations, rising fuel costs and environmental concerns are driving significant improvement in heavy duty truck aerodynamics and rolling resistance that fundamentally change the power needs of heavy duty trucks. Furthermore, exhaust energy recovery technology is evolving and driving a change in the power management strategies. Together with advances in hybrid technology, these changes open the potential for a cost-effective line haul hybrid line of trucks. This paper will present a simulation study that was performed in order to evaluate the potential fuel economy benefits of a heavy duty powertrain for commercial vehicles. The architecture includes hybrid electric components paired with a waste heat recovery system. The electric energy can be used to reduce engine load during peak power requests. The sources for the electric energy are both braking energy regeneration as well as conversion of waste heat to electricity via a high speed generator.
Technical Paper

Common Design of Jet Pump for Gasoline and Diesel Based Vehicles

2015-04-14
2015-01-0458
The objective of this paper is to provide a robust design solution for a Jet pump which is used for fuel removal from an Active Drain Liquid Trap (ADLT). This jet pump can work for both Gasoline and Diesel based automobiles. The major focus area of this paper, is improvement in the robustness of Jet pump performance parameters, such as motive flow and induced flow. A design study for such a two fuel application was first initiated using Taguchi's robust design approach. In order to reduce the inventory complexity and cost, a common design possibility was then addressed. Two approaches for robust design have been discussed, namely the Taguchi Methodology (Orthogonal Cross Array based design) and the Dual RSM (Response Surface Methodology) Technique. Results show that the Dual RSM provides improved performance with reduced variation, as compared to Taguchi's approach.
Technical Paper

Mitigating Vibration for a Heavy-Duty Diesel Cylinder Deactivation Truck

2021-04-06
2021-01-0661
Commercial vehicles require fast aftertreatment heat up in order to move the selective catalyst reduction (SCR) into the most efficient temperature range to meet upcoming NOx regulations. Heavy duty cylinder deactivation (CDA) is an important technology to meet these regulations. One of the challenges with implementing CDA in the heavy-duty market is to ensure acceptable engine and vehicle vibration. The purpose of this paper is to mitigate CDA vibration on a vehicle to acceptable levels. Emphasis was placed at the idle operating condition. Idle is the most challenging operating mode to enable, as deactivating cylinders reduces the frequency of the forcing function due to engine firing, which leads to a need to isolate these lower frequencies. A focused modal analysis of the engine (source), frame (path), and cabin (path/receiver) was used to characterize the vehicle system.
Technical Paper

Evaluation and Prediction of Fatigue Behavior of Carburized Steel under Uniaxial and Torsional Cyclic Loading

2023-05-25
2023-28-1330
Improving fatigue resistance is a key factor to design components for advanced vehicle transmissions. The selection of materials and heat treatment plays a crucial role in controlling fatigue performance of power transmission components such as gears and shafts. Traditional, low frequency fatigue testing, used for identifying fatigue limit or generating S-N curve for multiple sets of material parameters is highly time consuming and expensive. Hence, it is necessary to develop the capability to predict fatigue performance of materials at different loading conditions with limited amount of data for instance the hardness and inclusion size. In the present work, we have evaluated behavior of the carburized steel subjected to axial and torsional cyclic loading conditions at low frequencies.
Technical Paper

Root Cause Analysis of Limited Slip Differential Noise Vibration Harshness

2023-05-08
2023-01-1138
The primary objective of this research was to identify the root cause of limited slip differential (LSD) NVH. The study examined the significance of different oils and additives that make up the lubrication mix in the axle. The impacts of gear marking compound type, friction modifier type, gear marking compound level, friction modifier level, reaction plate surface finish roughness, and friction material type were studied using Taguchi's Design of Experiment. Eaton's Vertical Friction Tester (VFT), a sub-system level test stand, was used to measure the performance characteristics of the clutch pack and oil mix. Sequential approximation and cumulative analysis methodologies were used to analyze test data where NVH was beyond the measurement capacity of the test stand. The DOE analysis showed that the type of gear marking compound used to set the ring gear mesh during axle build had the most significant influence on NVH levels.
X