Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Air System Control for Advanced Diesel Engines

2007-04-16
2007-01-0970
In order to satisfy environmental regulations while maintaining strong performance and excellent fuel economy, advanced diesel engines are employing sophisticated air breathing systems. These include high pressure and low pressure EGR (Hybrid EGR), intake and exhaust throttling, and variable turbine geometry systems. In order to optimize the performance of these sub-systems, system level controls are necessary. This paper presents the design, benefits and test results of a model-based air system controller applied to an automotive diesel engine.
Technical Paper

Innovative Ultra-low NOx Controlled Auto-Ignition Combustion Process for Gasoline Engines: the 4-SPACE Project

2000-06-19
2000-01-1837
The purpose of the 4-SPACE (4-Stroke Powered gasoline Auto-ignition Controlled combustion Engine) industrial research project is to research and develop an innovative controlled auto-ignition combustion process for lean burn automotive gasoline 4-stroke engines application. The engine concepts to be developed could have the potential to replace the existing stoichiometric / 3-way catalyst automotive spark ignition 4-stroke engines by offering the potential to meet the most stringent EURO 4 emissions limits in the year 2005 without requiring DeNOx catalyst technology. A reduction of fuel consumption and therefore of corresponding CO2 emissions of 15 to 20% in average urban conditions of use, is expected for the « 4-SPACE » lean burn 4-stroke engine with additional reduction of CO emissions.
Technical Paper

Electric Axle Sizing for the Conversion of a Conventional Production Vehicle to a Prototype Battery Electric Vehicle

2020-10-23
2020-01-5093
The “Car of the Future” project converted a production 2015 rear-wheel-drive (RWD) Subaru BRZ into a series hybrid electric vehicle (HEV) with an intermediate milestone of a battery electric vehicle (BEV). This intermediate BEV step provided a point at which the vehicle could be evaluated in its all-electric operation with the absence of what were once critical components, including its original powertrain and powertrain electronics. This paper selects an appropriate electric machine that will meet the desired requirements for the “Car of the Future” BEV milestone. Vehicle technical specifications (VTS), which define critical vehicle requirements, were provided by the sponsor and adjusted to align with common requirement criteria such as acceleration and gradeability.
Technical Paper

xEV Propulsion System Control-Overview and Current Trends

2021-04-06
2021-01-0781
Propulsion system control algorithms covering the functional needs of xEV propulsion (‘x’ donates P0-P4 configurations) systems are presented in this paper. The scope and foundation are based on generic well-established HEV controller architectures. However, unlike conventional HEV (series, parallel and power split) powertrains, the next generation of integrated electric propulsion configurations will utilize a single micro controller that supports multiple control functions ranging from the electric machines, inverters, actuators, clutch solenoids, coolant pumps, etc. This presents a unique challenge to architect control algorithms within the AUTOSAR framework while satisfying the complex timing requirements of motor/generator-inverter (MGi) control and increased interface definitions between software components to realize functional integration between the higher level propulsion system and its sub-systems.
Journal Article

Optimization of Fuel Economy Using Optimal Controls on Regulatory and Real-World Driving Cycles

2020-04-14
2020-01-1007
In recent years, electrification of vehicle powertrains has become more mainstream to meet regulatory fuel economy and emissions requirements. Amongst the many challenges involved with powertrain electrification, developing supervisory controls and energy management of hybrid electric vehicle powertrains involves significant challenges due to multiple power sources involved. Optimizing energy management for a hybrid electric vehicle largely involves two sets of tasks: component level or low-level control task and supervisory level or high-level control task. In addition to complexity within powertrain controls, advanced driver assistance systems and the associated chassis controls are also continuing to become more complex. However, opportunities exist to optimize energy management when a cohesive interaction between chassis and powertrain controls can be realized.
Technical Paper

Effect of Standard Tuning Parameters on Mixture Homogeneity and Combustion Characteristics in a Hydrogen Direct Injection Engine

2023-04-11
2023-01-0284
Dihydrogen, as a zero CO2 fuel, is a strong candidate for internal combustion engine to limit global warming. This study shows the impact of standard tuning parameters on mixture homogeneity and combustion characteristics. A 2.2L Diesel engine on which the head was reworked to allow side mounted direct injector and central mounted spark plug was selected. The discussed tests were made at low engine speed and partial load. A spark advance sweep at different air-fuel ratios (λ) was conducted. The exponential relation between λ and NOx emissions is highly marked and extremely low NOx emissions up to 1.7 g/kWh at minimum spark advance for maximum brake torque can be measured. A λ sweep was performed at different starts of injection (SOI). The results show that, depending on the engine speed, a later SOI might lead to lower NOx emissions. For a λ setpoint of 1.8, at 1500 rpm, late SOI leads to 30% higher NOx emissions where at 2500 rpm these emissions are 26% lower.
Technical Paper

Valvetrain System for Exhaust Rebreathing on a Light-Duty Gasoline Compression Ignition (GCI) Engine

2023-10-31
2023-01-1673
The global automotive industry is undergoing a significant transition as battery electric vehicles enter the market and diesel sales decline. It is widely recognized that internal combustion engines (ICE) are needed for transport for years to come, however, demands on fuel efficiency, emissions, cost, and performance are extremely challenging. Gasoline compression ignition (GCI) is one approach to achieving demanding future efficiency and emissions targets. A key technology enabler for GCI is partially premixed, compression ignition (PPCI) combustion, which involves two high-pressure, late, fuel injections during the compression stroke. Both NOx and smoke emissions are greatly reduced relative to diesel engines, and this reduces aftertreatment (AT) requirements significantly. Exhaust rebreathing (RB) is used for robust low-load and cold operation. This is enabled by use of 2-Step, mode switching rocker arms to allow switching between rebreathe and normal combustion modes.
X