Refine Your Search

Topic

Search Results

Journal Article

Assessment of Various Environmental Thermal Loads on Passenger Thermal Comfort

2010-04-12
2010-01-1205
Virtual simulation of passenger compartment climatic conditions is becoming increasingly important as a complement to the wind tunnel and field testing to achieve improved thermal comfort while reducing the vehicle development time and cost. The vehicle cabin is subjected to various thermal environments. At the same time many of the design parameters are dependent on each other and the relationship among them is quite complex. Therefore, an experimental parametric study is very time consuming. The present 3-D RadTherm analysis coupled with the 3-D CFD flow field analysis takes into account the geometrical configuration of the passenger compartment which includes glazing surfaces and pertinent physical and thermal properties of the enclosure with particular emphasis on the glass properties. Virtual Thermal Comfort Engineering (VTCE) is a process that takes into account the cabin thermal environment coupled with a human physiology model.
Journal Article

A New Technique to Determine the Burning Velocity in a Gasoline Direct Injection Engine

2014-04-01
2014-01-1176
Many approaches have been taken to determine the burning velocity in internal combustion engines. Experimentally, the burning velocity has been determined in optically accessible gasoline engines by tracking the propagation of the flame front from the spark plug to the end of the combustion chamber. These experiments are costly as they require special imaging techniques and major modifications in the engine structure. Another approach to determine the burning velocity is from 3D CFD simulation models. These models require basic information about the mechanisms of combustion which are not available for distillate fuels in addition to many assumptions that have to be made to determine the burning velocity. Such models take long periods of computational time for execution and have to be calibrated and validated through experimentation.
Journal Article

Effect of Water Absorption on Tensile and Fatigue Behaviors of Two Short Glass Fiber Reinforced Thermoplastics

2015-04-14
2015-01-0546
An experimental study was conducted to evaluate the effect of water absorption on tensile and fatigue behaviors of an impact-modified short glass fiber polyamide-6 and a short glass fiber polybutylene terephthalate. Specimens were prepared in the longitudinal and transverse directions with respect to the injection mold flow direction and immersed in water. Kinetics of water absorption was studied and found to follow the Fick's law. Tensile tests were performed at room temperature with specimens in the longitudinal and transverse directions and with various degrees of water absorption. Mathematical relations were developed to represent tensile properties as a function of water content. Load-controlled tension-tension fatigue tests were conducted in both longitudinal and transverse directions and correlations between tensile and fatigue strengths were obtained. Specimen fracture surfaces were also microscopically studied and mechanisms of tensile and fatigue failures were identified.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Technical Paper

Improved PSD Fatigue Approach for Large FE Models with Wide Frequency Range

2020-04-14
2020-01-0499
Fatigue damage calculations are traditionally based on the time domain approach. Acceleration time history inputs are used to excite the system and the outputs are in a form of stress time history. This transient dynamic approach, as time history is intuitive to understand, provides straightforward and reasonable result. Nevertheless, a typical automotive proving ground test consists of 20 to 30 road events, it is not only computationally intensive but could be also a grueling process for an engineer to carry out as it requires several iterations for each event in the schedule before fatigue calculation. Alternatively, a frequency domain fatigue calculation is widely used. In this approach, both the dynamic loading and response are expressed in terms of Power Spectral Density (PSD) functions and the dynamic structure is treated as a linear transfer function. The transfer function is then multiplied with the event PSD to get the PSD of the stress.
Journal Article

The Effect of Welding Dimensional Variability on the Fatigue Life of Gas Metal Arc Welded Joints

2011-04-12
2011-01-0196
Gas Metal Arc Welding (GMAW) is widely employed for joining relatively thick sheet steels in automotive body-in-white structures and frames. The GMAW process is very flexible for various joint geometries and has relatively high welding speed. However, fatigue failures can occur at welded joints subjected to various types of loads. Thus, vehicle design engineers need to understand the fatigue characteristics of welded joints produced by GMAW. Currently, automotive structures employ various advanced high strength steels (AHSS) such as dual-phase (DP) and transformation-induced plasticity (TRIP) steels to produce lighter vehicle structures with improved safety performance and fuel economy, and reduced harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using GMAW in current body-in-white structures and frames.
Technical Paper

Aerodynamic Shape Improvement Based on Surface Pressure Gradients in the Stream-wise and the Transverse Directions

2010-04-12
2010-01-0511
Aerodynamic forces are the result of various complex viscous flow phenomena such as three-dimensional turbulent boundary layer on the body surfaces, longitudinal vortices induced by three-dimensional boundary layer separation, and high turbulence caused by flow separations. Understanding the flow characteristics and, especially, how the aerodynamic forces are influenced by the changes in the vehicle body shape, are very important in order to improve vehicle aerodynamics (particularly for low drag shapes). The present study was an attempt to provide insights for better understanding of the complex three-dimensional flow field around a vehicle by observing the limiting surface streamlines and the surface pressure gradients in the stream-wise and the transverse directions. The main objective of this work is to provide a comprehensive diagnostic analysis of the basic flow features in order to learn more about the flow separations in three-dimensions.
Technical Paper

The Soft & Firm Seat: How Innovation in Automotive Seating Can Improve the User’s Well Being

2001-03-05
2001-01-0383
Comfort is more than ever one of the major factors of car performance. The seat, a central component of the vehicle interior, contributes heavily to this perception. The increasing partnership between car manufacturers and automotive system equipment manufacturers pushes Faurecia to propose not only standard components but also a complete seat, with its functional and safety criteria, as well as those including comfort. This last aspect is what we will treat here. We are going to show you how the Soft & Firm Seat, a technical innovation developed by Faurecia, improves seat tactile and contact comfort behavior perceived by customers. This innovation has been designed according to Faurecia comfort methodology, using subjective assessment, objective measurements and simulation. Its validation concerns tactile and contact comfort, interactions with other comfort aspects and consequently the improvement of overall comfort.
Technical Paper

Methodology for design of the seat as a restraint system

2001-06-04
2001-06-0207
This study is the result of 2 years of work between the Renault safety department and the Faurecia R&D department. The paper is based on 5 different items aimed at developing improved occupant safety and controlling development of the safety components: - Definition of different crash configurations and the associated biomechanical criteria by the car manufacturer. - Definition of functional specifications (geometry and stiffness for each component) using global simulations. This is the starting point for discussions between the car manufacturer and the suppliers. Comparison of the specifications to the state of the art gives the first orientations for future developments. - An exchange of simulation data to allow overall simulations as early as possible by the supplier's simulation department: Each component can be represented by springs or contact interfaces in the different calculation programs.
Technical Paper

BioVolume : The Seat Integrated Human Based System to Meet FMVSS208 Automatic Suppression Concerns

2003-03-03
2003-01-0515
Motor vehicle Occupant related indications such as morphology class and dynamic position are important information to be taken into account by future passive safety systems in order to increase protection of occupants. Since 1998, the National Highway Traffic Safety Administration has initiated the first step that will require introduction of occupant sensing means. Occupant information will have to be considered as prior in airbag deployment decision in the event of a frontal crash. A first rule that amends the occupant crash protection standard will require application of improvements in order to reduce risk of severe or fatal airbag induced injuries to occupants, particularly young children and small adults [3], [4]. This paper presents the Faurecia BioVolume sensing system which has been developed for the purpose of occupant monitoring.
Technical Paper

An Optimization Tool for Exhaust System Design With Respect to Tail Pipe Noise Reduction

2003-05-05
2003-01-1646
Faurecia has developed a numerical tool which allows an automatic optimization of an exhaust line with respect to tailpipe harmonic noise. An optimizer pilots an in-house acoustic software in order to find the exhaust line configuration which fulfills the targets on the two first harmonics. The optimization method as well as the acoustic prediction tool are presented in this paper. Then, two examples of application of the methodology are detailed.
Technical Paper

Distance Corrected Capacitive Sensors for Advanced Air Bag Applications

2003-03-03
2003-01-0508
The Federal Motor Vehicle Safety Standards No 208 now includes directives rendering the morphological estimation of passengers mandatory for Advanced Air Bag systems. The Dynamic Automatic Suppression System, which is part of the advanced air bag system uses both the morphological and positional information about the passenger to allow or prevent air bag deployment. Various solutions have been proposed to obtain these information by using for instance capacitive sensors. The response of this kind of sensors depends drastically on their distance from the passenger. This paper presents a method, now implemented in the BIOVOLUME technology developed by Faurecia in partnership with Hitachi computer products, to render those sensors independent from this distance.
Technical Paper

Application of Fatigue Life Prediction Methods for GMAW Joints in Vehicle Structures and Frames

2011-04-12
2011-01-0192
In the North American automotive industry, various advanced high strength steels (AHSS) are used to lighten vehicle structures, improve safety performance and fuel economy, and reduce harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using Gas Metal Arc Welding (GMAW) in the current generation body-in-white structures. Additionally, fatigue failures are most likely to occur at joints subjected to a variety of different loadings. It is therefore critical that automotive engineers need to understand the fatigue characteristics of welded joints. The Sheet Steel Fatigue Committee of the Auto/Steel Partnership (A/S-P) completed a comprehensive fatigue study on GMAW joints of both AHSS and conventional sheet steels including: DP590 GA, SAE 1008, HSLA HR 420, DP 600 HR, Boron, DQSK, TRIP 780 GI, and DP780 GI steels.
Technical Paper

Development of a Thermal Enhancer™ for Combined Partial Range Burning and Hydrocarbon Dosing on Medium and Heavy Duty Engine Applications

2011-04-12
2011-01-0298
A Thermal Enhancer™ has been developed. Primarily, this device functions to increase exhaust gas temperatures to ensure appropriate catalytic heating as an enabler for diesel particulate filter regeneration and nitrogen oxide reduction technologies such as Selective Catalytic Reduction. In addition, this system also gives capability for hydrocarbon dosing as an efficient means for full active regeneration of a diesel particulate filter. An overview of this system and its functional applications will be given. Focus will be directed toward the design and test methodology that was adopted to develop a combustor. Results obtained from steady-state, stationary and transient engine dynamometer tests will illustrate the performance benefits and emissions control capabilities of this system.
Technical Paper

CAE-based Virtual Shaker Table for Exhaust System Component Development

2016-04-05
2016-01-1362
Traditionally, fatigue calculations are based on the time domain approach. Acceleration time history inputs are used to excite the system. Through the element stress time history output and rainflow cycle count algorithm, fatigue damage can be calculated through the Palmgren-Miner cumulative damage rule. Nevertheless, it can be a daunting process for CAE analysts as it requires iteration for each individual event in the schedule before calculating the fatigue life. The alternative approach is frequency domain fatigue calculation. In this approach, both the dynamic loading and response are expressed in terms of Power Spectral Density (PSD) functions and the dynamic structure is treated as a linear transfer function. The stress PSD is then obtained by multiplying the transfer function with the PSD load. The objective of this paper is to present a CAE based virtual shaker table procedure for an automotive exhaust component and subjecting it to PSD for fatigue life prediction.
Technical Paper

NDT of Weld Joints Using Shearographic Interferometry and Dynamic Exciation

2011-04-12
2011-01-0996
Weld Joints are widely used in automotive and aerospace industry. The main issue in the weld joints is the quality inspection to detect the disconnection in the welded area. In this paper, Shearographic technique with dynamic excitation is introduced to test the weld joints. In the experiments, the coupons are of 4 very thin layers of metal sheets welded together. The goal is to find out if there are any disconnections between the layers. They are clamped and then excited by a PZT actuator from behind. A real time digital Shearographic system with a self-refreshed reference image technology has been developed to display the measuring result, i.e. shearogram. A big range of driving frequencies is scanned to find the proper frequency and amplitude that can help to identify the disconnections. The results show that when the driving frequency reaches the resonance frequency, there will be big amplitude and thus a fringe pattern becomes visible on the coupon surface.
Technical Paper

Optimization of Base Oils and Polymers for Improved Durability and Fuel-Efficient Axle Lubricants

2022-02-15
2022-01-5008
A critical market driver for rear axle lubricants continues to be the improved fuel efficiency, which is related to improvements in power transfer efficiency. Power transfer efficiency improvements are achieved with a reduction in the kinematic viscosity (KV) of rear axle lubricants. General Motors (GM) recently reduced the recommended viscosity grade for their rear axle lubricants from the Society of Automotive Engineers standard (SAE) 75W-90 to SAE 75W-85. This reduction in viscosity continues to require the optimization of rear axle lubricants to ensure durability. Lubricants that form thick elastohydrodynamic (EHD) films and are shear stable even when lower kinematic viscosities are required. This work depicts how a rear axle lubricant was developed and improved with the proper selection of base oil and polymer. This newly developed SAE 75W-85 rear axle fluid was incorporated as factory fill in 2019 in T1 LDPU-GMC Sierra and Chevrolet Silverado 1500 series pickup trucks.
Technical Paper

Exhaust and Muffler Aeroacoustics Predictions using Lattice Boltzmann Method

2018-04-03
2018-01-1287
Exhaust systems are a necessary solution to reduce combustion engine noise originating from flow fluctuations released at each firing cycle. However, exhaust systems also generate a back pressure detrimental for the engine efficiency. This back pressure must be controlled to guarantee optimal operating conditions for the engine. To satisfy both optimal operating conditions and optimal noise levels, the internal design of exhaust systems has become complex, often leading to the emergence of undesired noise generated by turbulent flow circulating inside a muffler. Associated details needed for the manufacturing process, such as brackets for the connection between parts, can interact with the flow, generating additional flow noise or whistles. To minimize the risks of undesirable noise, multiple exhaust designs must be assessed early to prevent the late detection of issues, when design and manufacturing process are frozen. However, designing via an experimental approach is challenging.
Technical Paper

Fatigue Life Prediction for Adaptable Insert Welds between Sheet Steel and Cast Magnesium Alloy

2016-04-05
2016-01-0392
Joining technology is a key factor to utilize dissimilar materials in vehicle structures. Adaptable insert weld (AIW) technology is developed to join sheet steel (HSLA350) to cast magnesium alloy (AM60) and is constructed by combining riveting technology and electrical resistance spot welding technology. In this project, the AIW joint technology is applied to construct front shock tower structures composed with HSLA350, AM60, and Al6082 and a method is developed to predict the fatigue life of the AIW joints. Lap-shear and cross-tension specimens were constructed and tested to develop the fatigue parameters (load-life curves) of AIW joint. Two FEA modeling techniques for AIW joints were used to model the specimen geometry. These modeling approaches are area contact method (ACM) and TIE contact method.
Technical Paper

The Effects of Octane, Sensitivity and K on the Performance and Fuel Economy of a Direct Injection Spark Ignition Vehicle

2014-04-01
2014-01-1216
This study investigates the effects of octane quality on the performance, i.e., acceleration and power, and fuel economy (FE) of one late model US vehicle, which is powered by a small displacement, turbocharged, gasoline direct injection (GDI) engine. The relative importance of the gasoline parameters Research and Motor Octane Number (RON and MON) in meeting the octane requirement of this engine to run at an optimum spark timing for the given demand was considered by evaluating the octane index (OI), where OI = (1-K) RON + K MON and K is a constant depending on engine design and operating conditions. Over wide open throttle (WOT) accelerations, the average K of this Pontiac Solstice was determined as −0.75, whereby a lower MON would give a higher OI, a higher knock resistance and better performance.
X