Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Journal Article

Case Studies of Edge Fracture of Dual Phase Steel Stampings

2015-04-14
2015-01-0529
With the implementation of Advanced High Strength Steel (AHSS) becoming more common for automotive manufacturers to reduce mass and/or improve performance, special stamping considerations must be made. Certain production parts may split at trimmed edges where strain levels are well below the forming limit curve of the respective grade, which is more applicable to necking fractures/splits. Similar to the presence of hard inclusion stringers (i.e. MnS) that can cause edge fractures in high strength low alloy steels, AHSS steels most susceptible to this phenomenon typically consist of dual phase or multiphase microstructures containing both a hard phase (martensite) and a soft phase (ferrite). Specific examples of these parts will be discussed, including studies to determine the root cause of the edge fracture and to communicate the solutions for consideration in appropriate standards and specifications.
Journal Article

Next Generation Voltec Electric Machines; Design and Optimization for Performance and Rare-Earth Mitigation

2015-04-14
2015-01-1208
This paper presents the design and performance details of electric propulsion system for GM's second generation Extended Range Electric Vehicle (EREV). First generation Chevrolet Volts have been driven over half a billion miles in North America from October 2013 through September 2014, 74% of which were all-electric. The second generation of Volt brings a significant mass reduction and increased performance, EV driving range and fuel economy while simultaneously reducing rare earth content in its traction electric motors. The electric propulsion system is built on two electric machines; both PMAC topology. While hybrid-electric vehicles are gaining in popularity in hopes of addressing cleaner, energy sustainable technology in transportation, materials sustainability and rare earth dependence mitigation has not been the first priority in the hybrids available on the market today.
Journal Article

A Scalable Modeling Approach for the Simulation and Design Optimization of Automotive Turbochargers

2015-04-14
2015-01-1288
Engine downsizing and super/turbocharging is currently the most followed trend in order to reduce CO2 emissions and increase the powertrain efficiency. A key challenge for achieving the desired fuel economy benefits lies in optimizing the design and control of the engine boosting system, which requires the ability to rapidly sort different design options and technologies in simulation, evaluating their impact on engine performance and fuel consumption. This paper presents a scalable modeling approach for the characterization of flow and efficiency maps for automotive turbochargers. Starting from the dimensional analysis theory for turbomachinery and a set of well-known control-oriented models for turbocharged engines simulation, a novel scalable model is proposed to predict the flow and efficiency maps of centrifugal compressors and radial inflow turbines as function of their key design parameters.
Journal Article

A Linear Parameter Varying Combined with Divide-and-Conquer Approach to Thermal System Modeling of Battery Modules

2016-05-01
2015-01-9148
A linear parameter varying (LPV) reduced order model (ROM) is used to approximate the volume-averaged temperature of battery cells in one of the modules of the battery pack with varying mass flow rate of cooling fluid using uniform heat source as inputs. The ROM runs orders of magnitude faster than the original CFD model. To reduce the time it takes to generate training data, used in building LPV ROM, a divide-and-conquer approach is introduced. This is done by dividing the battery module into a series of mid-cell and end-cell units. A mid-cell unit is composed of a cooling channel sandwiched in between two half -cells. A half-cell has half as much heat capacity as a full-cell. An end-cell unit is composed of a cooling channel sandwiched in between full-cell and a half-cell. A mass flow rate distribution look-up-table is generated from a set of steady-state simulations obtained by running the full CFD model at different inlet manifold mass flow rate samples.
Journal Article

Development of Corrosion Testing Protocols for Magnesium Alloys and Magnesium-Intensive Subassemblies

2013-04-08
2013-01-0978
Corrosion tendency is one of the major inhibitors for increased use of magnesium alloys in automotive structural applications. Moreover, systematic or standardized methods for evaluation of both general and galvanic corrosion of magnesium alloys, either as individual components or eventually as entire subassemblies, remains elusive, and receives little attention from professional and standardization bodies. This work reports outcomes from an effort underway within the U.S. Automotive Materials Partnership - ‘USAMP’ (Chrysler, Ford and GM) directed toward enabling technologies and knowledge base for the design and fabrication of magnesium-intensive subassemblies intended for automotive “front end” applications. In particular, subassemblies consisting of three different grades of magnesium (die cast, sheet and extrusion) and receiving a typical corrosion protective coating were subjected to cyclic corrosion tests as employed by each OEM in the consortium.
Technical Paper

Handling Delays in Stability Control of Electric Vehicles Using MPC

2015-04-14
2015-01-1598
In this paper, the problem of stability control of an electric vehicle is addressed. To this aim, it is required that the vehicle follows a desired yaw rate at all driving/road conditions. The desired yaw rate is calculated based on steering angle, vehicle speed, vehicle geometric properties as well as road conditions. The vehicle response is modified by torque vectoring on front and/or rear axles. This control problem is subject to several constraints. The electric motors can only deliver a certain amount of torque at a given rotational speed. In addition, the tire capacity also plays an important role. It limits the amount of torque they can transfer without causing wheel to slip excessively. These constraints make the Model Predictive Control (MPC) approach a suitable choice, because it can explicitly consider the constraints of the control problem, in particular the tire capacity constraint, and help prevent tire saturation, which is often the cause of vehicle instability.
Technical Paper

Gaskets for Extreme Exhaust Test Applications

2015-04-14
2015-01-1740
Gasket materials are utilized for various different types of high temperature testing to prevent leaking at bolted joints. In particular, the automotive test services field uses flanged-gasket bolted exhaust joints to provide a convenient method for installation & removal of exhaust components like catalytic converters for aging, performance testing, etc. Recent improvements in the catalyst aging methods require flanged-gasket joints that can withstand exhaust temperatures as high as 1200°C. Gasket materials previously used in these applications like the graphite based gasket materials have exhibited physical breakdowns, severe leakage, and general thermal failures under these extreme temperatures. In order to prevent these leaks, metal-reinforced gasket materials in a number of configurations were introduced to these extreme temperature environments to evaluate their robustness to these temperatures.
Technical Paper

Measure of Forming Limit Strain on the Aluminum Sheets Passed Through Draw-Bead by Digital Image Correlation

2015-04-14
2015-01-0598
Accurate determination of the forming limit strain of aluminum sheet metal is an important topic which has not been fully solved by industry. Also, the effects of draw beads (enhanced forming limit behaviors), normally reported on steel sheet metals, on aluminum sheet metal is not fully understood. This paper introduces an experimental study on draw bead effects on aluminum sheet metals by measuring the forming limit strain zero (FLD0) of the sheet metal. Two kinds of aluminum, AL 6016-T4 and AL 5754-0, are used. Virgin material, 40% draw bead material and 60% draw bead material conditions are tested for each kind of aluminum. Marciniak punch tests were performed to create a plane strain condition. A dual camera Digital Image Correlation (DIC) system was used to record and measure the deformation distribution history during the punch test. The on-set necking timing is determined directly from surface shape change. The FLD0 of each test situation is reported in this article.
Technical Paper

The Effect of Oil Debris in Turbocharger Journal Bearings on Subsynchronous NVH

2015-04-14
2015-01-1285
Instances have occurred where the outer surface of turbocharger fully floating journal bearing bushings have exhibited damage from oil debris resulting in constant tone noise and subsequent warranty claims. This paper studies the effect of oil debris in Turbocharger journal bearings on Subsynchronous NVH. A CFD model is built to study the behavior of oil debris particles with different sizes. It is found that the dominant centrifugal forces prevent larger particles from reaching the inner film while smaller particles travel more easily to the inner film. It is also found that the turbine side is more likely to become damaged from debris than the compressor side bearing due to higher temperatures. A tribology analysis shows that oil debris particles in the outer film will reduce the speed ratio, while oil debris particles in inner film will increase the speed ratio. The tribology analysis also predicts the effects of oil debris on bearing stiffness and damping.
Technical Paper

Dual Degree of Freedom Vibration Damper (DDVD) for Driveline Noise and Vibration Issue Resolution

2015-06-15
2015-01-2177
Powertrain and driveline systems interaction in rear wheel drive vehicle development has recently gained attention for the improvement of interior noise and vibration in emerging markets. The driveline is a significant path for engine-generated noise and vibration to reach the interior occupant interfaces, where it affects refinement perception. The interaction of powertrain excitation orders and driveline resonant responders covers a wide range of frequency and vehicle operating conditions. This interaction poses significant challenges during vehicle development. With recent increased demand for higher specific power from diesel engines, driveline refinement has become even more challenging, especially for rear wheel drive vehicles. Two driveline related refinement issues were observed during evaluation of a RWD vehicle. Root cause analysis determined that the first issue (lower rpm boom noise and vibration) was due to engine torsional excitation of the driveline.
X