Refine Your Search

Topic

Search Results

Journal Article

Assessment of Various Environmental Thermal Loads on Passenger Thermal Comfort

2010-04-12
2010-01-1205
Virtual simulation of passenger compartment climatic conditions is becoming increasingly important as a complement to the wind tunnel and field testing to achieve improved thermal comfort while reducing the vehicle development time and cost. The vehicle cabin is subjected to various thermal environments. At the same time many of the design parameters are dependent on each other and the relationship among them is quite complex. Therefore, an experimental parametric study is very time consuming. The present 3-D RadTherm analysis coupled with the 3-D CFD flow field analysis takes into account the geometrical configuration of the passenger compartment which includes glazing surfaces and pertinent physical and thermal properties of the enclosure with particular emphasis on the glass properties. Virtual Thermal Comfort Engineering (VTCE) is a process that takes into account the cabin thermal environment coupled with a human physiology model.
Journal Article

Model-Based Analysis of Cell Balancing of Lithium-ion Batteries for Electric Vehicles

2013-04-08
2013-01-1755
Cell balancing is a key function of battery management system (BMS) that is implemented to maximize the battery's available capacity and service life. The increasing demand of larger and better performance pack has raised the need to investigate the various cell balancing techniques so that the energy of the battery can be fully realized. In this work we develop a phenomenological model in order to quantify the benefits of passive balancing and active balancing. The electrical response of a model pack consisting of serially connected lithium ion cells is simulated with Matlab. The effects of the variance of cell capacity, internal resistance, self-discharge rates, pack configuration and size are studied. The possible optimization rooms for implementing passive and active balancing are suggested.
Journal Article

Optimizing Lithium-Ion Batteries - Tailoring Electrodes for Microhybrid Vehicle Applications

2014-04-01
2014-01-1836
Design of batteries for automotive applications requires a careful balance between vehicle requirements - as driven by automakers - and cost. Typically, for batteries, the goal is to meet the most stringent requirement at a competitive cost. The real challenge in doing so is understanding how the battery-level requirements vary with changes in the vehicle, powertrain, and drive cycle. In this work, we consider the relationship between vehicle-level and battery-level requirements of microhybrid vehicles and their linkage with battery design. These vehicle platforms demand high-power pulses for impractical durations - over 60 seconds on some drive cycles. We demonstrate a method for optimizing the battery design for fuel economy against any specific drive cycle, whether regulatory, consumer, or otherwise. This method allows for a high degree of customization against manufacturer or consumer value.
Journal Article

A New Technique to Determine the Burning Velocity in a Gasoline Direct Injection Engine

2014-04-01
2014-01-1176
Many approaches have been taken to determine the burning velocity in internal combustion engines. Experimentally, the burning velocity has been determined in optically accessible gasoline engines by tracking the propagation of the flame front from the spark plug to the end of the combustion chamber. These experiments are costly as they require special imaging techniques and major modifications in the engine structure. Another approach to determine the burning velocity is from 3D CFD simulation models. These models require basic information about the mechanisms of combustion which are not available for distillate fuels in addition to many assumptions that have to be made to determine the burning velocity. Such models take long periods of computational time for execution and have to be calibrated and validated through experimentation.
Journal Article

Effect of Water Absorption on Tensile and Fatigue Behaviors of Two Short Glass Fiber Reinforced Thermoplastics

2015-04-14
2015-01-0546
An experimental study was conducted to evaluate the effect of water absorption on tensile and fatigue behaviors of an impact-modified short glass fiber polyamide-6 and a short glass fiber polybutylene terephthalate. Specimens were prepared in the longitudinal and transverse directions with respect to the injection mold flow direction and immersed in water. Kinetics of water absorption was studied and found to follow the Fick's law. Tensile tests were performed at room temperature with specimens in the longitudinal and transverse directions and with various degrees of water absorption. Mathematical relations were developed to represent tensile properties as a function of water content. Load-controlled tension-tension fatigue tests were conducted in both longitudinal and transverse directions and correlations between tensile and fatigue strengths were obtained. Specimen fracture surfaces were also microscopically studied and mechanisms of tensile and fatigue failures were identified.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Journal Article

Electrochemical Modeling of Lithium Plating of Lithium Ion Battery for Hybrid Application

2017-03-28
2017-01-1201
Lithium plating is an important failure factor for lithium ion battery with carbon-based anodes and therefore preventing lithium plating has been a critical consideration in designs of lithium ion battery and battery management system. The challenges are: How to determine the charging current limits which may vary with temperature, state of charge, state of health, and battery operations? Where are the optimization rooms in battery design and management system without raising plating risks? Due to the complex nature of lithium plating dynamics it is hard to detect and measure the plating by any of experimental means. In this work we developed an electrochemical model that explicitly includes lithium plating reaction. It enables both determination of plating onset and quantification of plated lithium. We have studied the effects of charging pulses on homogenous plating in order to provide guidance for lithium ion battery design in hybrid applications.
Journal Article

The Effect of Welding Dimensional Variability on the Fatigue Life of Gas Metal Arc Welded Joints

2011-04-12
2011-01-0196
Gas Metal Arc Welding (GMAW) is widely employed for joining relatively thick sheet steels in automotive body-in-white structures and frames. The GMAW process is very flexible for various joint geometries and has relatively high welding speed. However, fatigue failures can occur at welded joints subjected to various types of loads. Thus, vehicle design engineers need to understand the fatigue characteristics of welded joints produced by GMAW. Currently, automotive structures employ various advanced high strength steels (AHSS) such as dual-phase (DP) and transformation-induced plasticity (TRIP) steels to produce lighter vehicle structures with improved safety performance and fuel economy, and reduced harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using GMAW in current body-in-white structures and frames.
Journal Article

Lead-Acid State of Charge Estimation for Start-Stop Applications

2013-04-08
2013-01-1532
Start-stop, aka engine-stop or idle-stop, technologies are increasingly being applied to automotive vehicles to increase fuel economy. Start-stop vehicles turn off the engine during periods of zero speed and/or during prolonged coast down. During engine-stop, the vehicle electronics are powered solely by the battery. To replenish the battery, the battery needs to be recharged. In typical ICE vehicles, the battery is continuously charged. However, fuel economies can be improved if strategic charging of the battery can be achieved through selective charging through the alternator or through regenerative braking. To optimize fuel economy, an accurate estimation of the battery state of charge (SOC) during vehicle operation is required. Although state of charge estimation has mainly focused on Li-ion batteries, lead-acid batteries may be used successfully in start-stop applications.
Technical Paper

Aerodynamic Shape Improvement Based on Surface Pressure Gradients in the Stream-wise and the Transverse Directions

2010-04-12
2010-01-0511
Aerodynamic forces are the result of various complex viscous flow phenomena such as three-dimensional turbulent boundary layer on the body surfaces, longitudinal vortices induced by three-dimensional boundary layer separation, and high turbulence caused by flow separations. Understanding the flow characteristics and, especially, how the aerodynamic forces are influenced by the changes in the vehicle body shape, are very important in order to improve vehicle aerodynamics (particularly for low drag shapes). The present study was an attempt to provide insights for better understanding of the complex three-dimensional flow field around a vehicle by observing the limiting surface streamlines and the surface pressure gradients in the stream-wise and the transverse directions. The main objective of this work is to provide a comprehensive diagnostic analysis of the basic flow features in order to learn more about the flow separations in three-dimensions.
Technical Paper

Application of Fatigue Life Prediction Methods for GMAW Joints in Vehicle Structures and Frames

2011-04-12
2011-01-0192
In the North American automotive industry, various advanced high strength steels (AHSS) are used to lighten vehicle structures, improve safety performance and fuel economy, and reduce harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using Gas Metal Arc Welding (GMAW) in the current generation body-in-white structures. Additionally, fatigue failures are most likely to occur at joints subjected to a variety of different loadings. It is therefore critical that automotive engineers need to understand the fatigue characteristics of welded joints. The Sheet Steel Fatigue Committee of the Auto/Steel Partnership (A/S-P) completed a comprehensive fatigue study on GMAW joints of both AHSS and conventional sheet steels including: DP590 GA, SAE 1008, HSLA HR 420, DP 600 HR, Boron, DQSK, TRIP 780 GI, and DP780 GI steels.
Technical Paper

Integrating Feedback Control Algorithms with the Lithium-Ion Battery Model to Improve the Robustness of Real Time Power Limit Estimation

2017-03-28
2017-01-1206
Power limit estimation of a lithium-ion battery system plays an important balancing role of optimizing the battery design cost, maximizing for power and energy, and protecting the battery from abusive usage to achieve the intended life. The power capability estimation of any given lithium-ion battery system is impacted by the variability of many sources, such as cell and system components resistance, temperature, cell capacity, and real time state of charge and state of health estimation errors. This causes a distribution of power capability among battery packs that are built to the same design specification. We demonstrated that real time power limit estimation can only partially address the system variability due to the errors introduced by itself. Integrating feedback control algorithms with the lithium-ion battery model maximizes the battery power capability, improves the battery robustness to variabilities, and reduces the real time estimation errors.
Technical Paper

NDT of Weld Joints Using Shearographic Interferometry and Dynamic Exciation

2011-04-12
2011-01-0996
Weld Joints are widely used in automotive and aerospace industry. The main issue in the weld joints is the quality inspection to detect the disconnection in the welded area. In this paper, Shearographic technique with dynamic excitation is introduced to test the weld joints. In the experiments, the coupons are of 4 very thin layers of metal sheets welded together. The goal is to find out if there are any disconnections between the layers. They are clamped and then excited by a PZT actuator from behind. A real time digital Shearographic system with a self-refreshed reference image technology has been developed to display the measuring result, i.e. shearogram. A big range of driving frequencies is scanned to find the proper frequency and amplitude that can help to identify the disconnections. The results show that when the driving frequency reaches the resonance frequency, there will be big amplitude and thus a fringe pattern becomes visible on the coupon surface.
Technical Paper

Modularized Simulation Tool to Evaluate Battery Solutions for 12 V Advanced Start Stop Vehicles

2018-04-03
2018-01-0446
The 12 V advanced start stop systems can offer 5-8% fuel economy improvement over a conventional vehicle. Although the fuel economy is not as high as those of mild to full hybrids, its low implementation cost makes it an attractive electrification solutions for vehicles. As a result, the 12 V advanced start stop technology has been evolving fast in recent years. On one hand, battery suppliers are offering a variety of energy storage solutions such as stand-alone lead acid, stand-alone LFP/Graphite, dual batteries of lead acid parallel with NMC/LTO, LMO/LTO, NMC/Graphite, and capacitors, etc. For dual battery solutions, the architecture also varies from passive parallel connection to active switching. On the other hand, OEM are considering to leverage a lot more use out of traditional 12 V SLI (start, light, and ignition) for functions such as power steering, air conditioning, heater, etc.
Technical Paper

Optimization of Base Oils and Polymers for Improved Durability and Fuel-Efficient Axle Lubricants

2022-02-15
2022-01-5008
A critical market driver for rear axle lubricants continues to be the improved fuel efficiency, which is related to improvements in power transfer efficiency. Power transfer efficiency improvements are achieved with a reduction in the kinematic viscosity (KV) of rear axle lubricants. General Motors (GM) recently reduced the recommended viscosity grade for their rear axle lubricants from the Society of Automotive Engineers standard (SAE) 75W-90 to SAE 75W-85. This reduction in viscosity continues to require the optimization of rear axle lubricants to ensure durability. Lubricants that form thick elastohydrodynamic (EHD) films and are shear stable even when lower kinematic viscosities are required. This work depicts how a rear axle lubricant was developed and improved with the proper selection of base oil and polymer. This newly developed SAE 75W-85 rear axle fluid was incorporated as factory fill in 2019 in T1 LDPU-GMC Sierra and Chevrolet Silverado 1500 series pickup trucks.
Technical Paper

Connecting Vehicle Requirements with Battery Design and Testing: Linking Drive Cycles with Material Properties

2013-04-08
2013-01-1523
Traditional testing approaches for fundamental battery materials focus on highly artificial test profiles, for example constant current (CC) or constant voltage (CV) testing. Additionally, the currents used for capacity and cycle tests are often very low. These profiles are not indicative of the types of current/voltage profiles that the battery will experience during actual vehicle operation. As a result, these simple tests may fail to sufficiently elicit the reduction in performance and failure modes that occur during more dynamic cycling. In this paper, we outline an approach in which vehicle-level modeling is applied to regulatory drive cycles in order to derive power vs. time requirements for an energy storage system. These requirements are used to identify segments of the regulatory drive cycles that present significant challenges to the battery. Finally, the most stressing portions of the drive cycle are used to determine limiting physical characteristics of batteries.
Technical Paper

Fatigue Life Prediction for Adaptable Insert Welds between Sheet Steel and Cast Magnesium Alloy

2016-04-05
2016-01-0392
Joining technology is a key factor to utilize dissimilar materials in vehicle structures. Adaptable insert weld (AIW) technology is developed to join sheet steel (HSLA350) to cast magnesium alloy (AM60) and is constructed by combining riveting technology and electrical resistance spot welding technology. In this project, the AIW joint technology is applied to construct front shock tower structures composed with HSLA350, AM60, and Al6082 and a method is developed to predict the fatigue life of the AIW joints. Lap-shear and cross-tension specimens were constructed and tested to develop the fatigue parameters (load-life curves) of AIW joint. Two FEA modeling techniques for AIW joints were used to model the specimen geometry. These modeling approaches are area contact method (ACM) and TIE contact method.
Technical Paper

A Simulation Based Analysis of 12V and 48V Microhybrid Systems Across Vehicle Segments and Drive Cycles

2015-04-14
2015-01-1151
The majority of studies in automotive electrification technology focus on the performance of high voltage HEV and EV powertrains. With the introduction of microhybrid systems as a near term technology trend, this work focuses on an analysis of low voltage (<60V) systems across multiple vehicle segments and region-specific regulatory drive cycles. Vehicle simulation results are presented for 12V and 48V vehicle systems equipped with start-stop and regenerative braking, features commonly associated with microhybrid vehicles. Simulation results show that fuel economy benefits from start-stop vary significantly between drive cycles. In contrast, total energy recuperation is similar across all vehicle classes for 12V microhybrid systems. For 48V systems, total recuperated energy increases with vehicle mass while the percent fuel economy benefit is highest for lighter vehicles.
Technical Paper

Estimating the Power Limit of a Lithium Battery Pack by Considering Cell Variability

2015-04-14
2015-01-1181
Power limit estimation of a lithium-ion battery pack can be employed by a battery management system (BMS) to balance a variety of operational considerations, including optimization of pulse capability while avoiding damage and minimizing aging. Consideration of cell-to-cell performance variability of lithium-ion batteries is critical to correct estimation of the battery pack power limit as well as proper sizing of the individual cells in the battery. Further, understanding of cell variability is necessary to protect the cell and other system components (e.g., fuse and contactor, from over-current damage). In this work, we present the use of an equivalent circuit model for estimation of the power limit of lithium-ion battery packs by considering the individual cell variability under current or voltage constraints. We compare the power limit estimation by using individual cell characteristics compared to the estimate found using only max/min values of cell characteristics.
Technical Paper

Model Development and Simulations of 12V Dual Batteries towards Design Optimization of Microhybrid Vehicles

2015-04-14
2015-01-1199
The microhybrid electric vehicle (MHEV) has increasingly received attention since it holds promise for significant increases in fuel economy vs. traditional gasoline vehicles at a lower price point than hybrid vehicles. Passive parallel connection of the traditional 12V lead acid battery and a high power lithium ion battery has been identified as a potential architecture that will facilitate fuel economy improvements with minimal changes to the electrical network. Enabling a passive dual-battery connection requires a design match between the two batteries, including characteristics such as battery size and resistance, so that the performance can be optimized. In this work we have developed a hybrid model that couples electrochemical model of lithium ion battery (NMC-Graphite as an example) and an equivalent circuit model of lead acid battery in order to study the behavior of 12V dual-battery microhybrid architectures.
X