Refine Your Search

Topic

Author

Search Results

Journal Article

Assessment of Various Environmental Thermal Loads on Passenger Thermal Comfort

2010-04-12
2010-01-1205
Virtual simulation of passenger compartment climatic conditions is becoming increasingly important as a complement to the wind tunnel and field testing to achieve improved thermal comfort while reducing the vehicle development time and cost. The vehicle cabin is subjected to various thermal environments. At the same time many of the design parameters are dependent on each other and the relationship among them is quite complex. Therefore, an experimental parametric study is very time consuming. The present 3-D RadTherm analysis coupled with the 3-D CFD flow field analysis takes into account the geometrical configuration of the passenger compartment which includes glazing surfaces and pertinent physical and thermal properties of the enclosure with particular emphasis on the glass properties. Virtual Thermal Comfort Engineering (VTCE) is a process that takes into account the cabin thermal environment coupled with a human physiology model.
Journal Article

A New Technique to Determine the Burning Velocity in a Gasoline Direct Injection Engine

2014-04-01
2014-01-1176
Many approaches have been taken to determine the burning velocity in internal combustion engines. Experimentally, the burning velocity has been determined in optically accessible gasoline engines by tracking the propagation of the flame front from the spark plug to the end of the combustion chamber. These experiments are costly as they require special imaging techniques and major modifications in the engine structure. Another approach to determine the burning velocity is from 3D CFD simulation models. These models require basic information about the mechanisms of combustion which are not available for distillate fuels in addition to many assumptions that have to be made to determine the burning velocity. Such models take long periods of computational time for execution and have to be calibrated and validated through experimentation.
Journal Article

Effect of Water Absorption on Tensile and Fatigue Behaviors of Two Short Glass Fiber Reinforced Thermoplastics

2015-04-14
2015-01-0546
An experimental study was conducted to evaluate the effect of water absorption on tensile and fatigue behaviors of an impact-modified short glass fiber polyamide-6 and a short glass fiber polybutylene terephthalate. Specimens were prepared in the longitudinal and transverse directions with respect to the injection mold flow direction and immersed in water. Kinetics of water absorption was studied and found to follow the Fick's law. Tensile tests were performed at room temperature with specimens in the longitudinal and transverse directions and with various degrees of water absorption. Mathematical relations were developed to represent tensile properties as a function of water content. Load-controlled tension-tension fatigue tests were conducted in both longitudinal and transverse directions and correlations between tensile and fatigue strengths were obtained. Specimen fracture surfaces were also microscopically studied and mechanisms of tensile and fatigue failures were identified.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Journal Article

Acoustic Emission Processing for Turbocharged GDI Engine Control Applications

2015-04-14
2015-01-1622
In the field of passenger car engines, recent research advances have proven the effectiveness of downsized, turbocharged and direct injection concepts, applied to gasoline combustion systems, to reduce the overall fuel consumption while respecting particularly stringent exhaust emissions limits. Knock and turbocharger control are two of the most critical factors that influence the achievement of maximum efficiency and satisfactory drivability, for this new generation of engines. The sound emitted from an engine encloses many information related to its operating condition. In particular, the turbocharger whistle and the knock clink are unmistakable sounds. This paper presents the development of real-time control functions, based on direct measurement of the engine acoustic emission, captured by an innovative and low cost acoustic sensor, implemented on a platform suitable for on-board application.
Journal Article

The Effect of Welding Dimensional Variability on the Fatigue Life of Gas Metal Arc Welded Joints

2011-04-12
2011-01-0196
Gas Metal Arc Welding (GMAW) is widely employed for joining relatively thick sheet steels in automotive body-in-white structures and frames. The GMAW process is very flexible for various joint geometries and has relatively high welding speed. However, fatigue failures can occur at welded joints subjected to various types of loads. Thus, vehicle design engineers need to understand the fatigue characteristics of welded joints produced by GMAW. Currently, automotive structures employ various advanced high strength steels (AHSS) such as dual-phase (DP) and transformation-induced plasticity (TRIP) steels to produce lighter vehicle structures with improved safety performance and fuel economy, and reduced harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using GMAW in current body-in-white structures and frames.
Journal Article

Reduction of Exhaust Noise by Means of Thermal Acoustics

2012-04-16
2012-01-0804
It is well known that mufflers attenuate the engine noise essentially through dissipative and reflective effects. There is however another alternative technique for noise attenuation that has not been deeply explored, i.e. thermal acoustics. In fact the temperature of the gas influences the acoustic behaviour of the exhaust system; reducing the exhaust gas temperature, the sound pressure of the acoustic waves is reduced. This phenomenum could be used to improve the sound attenuation. We propose an experimental study of this phenomenum and of how it could be used to reduce the exhaust noise. We measured that, using in underfloor position passive heat exchangers like corrugated pipes, the exhaust gas quickly exchanges heat with the external environment and arrives to the rear muffler significantly colder. We observe about 2 dB decrease of the OA dB value when the gas temperature decreases of about 100°C.
Technical Paper

The Integral Flex-Vehicle Mixture Control of Alcohol-Based Bio-Fuels - A New Challenge for Fuel-Atomizer Optimization

2008-04-14
2008-01-0437
The paper presents the main reasons for the increasing market share of vehicles with the capacity to run on random bio fuel blends. It describes the philosophy and basic layout of current integral flex mixture preparation systems. The paper demonstrates the necessity to introduce a series of new high-performance analysis tools for further improvement of the mixture preparation system and in particular the fuel injector performance. The paper continues with a discussion of the basic structure of the interactive Virtual Engine Model approach applied to fuel injector atomizer optimization. Test results obtained by application of the new tools to two different series production flex engines are presented. The impact of the improved spray formation capability of the optimized fuel injector atomizers is explained and experimental vehicle FTP-cycle data are reported and discussed.
Technical Paper

Gerotor Lubricating Oil Pump for IC Engines

1998-10-19
982689
This paper documents an extensive study aimed at a better understanding of the peculiarities and performance of crankshaft mounted gerotor pumps for IC engines lubrication. At different extents, the modelling, simulation and testing of a specific unit are all considered. More emphasis, at the modelling phase, is dedicated to the physical and mathematical description of the flow losses mechanisms; the often intricate aspects of kinematics being deliberately left aside. The pressure relief valve is analysed at a considerable extent as is the modelling of the working fluid, a typically aerated subsystem in such applications. Simulation is grounded on AMESim, a relatively novel tool in the fluid power domain, that proves effective and compliant with user deeds and objectives. Testing, at steady-state conditions, forms the basis for the pro!gressive tuning of the simulation model and provides significant insight into this type of volumetric pump.
Technical Paper

Redesign of a Differential Housing for a Formula Car (FSAE)

1998-11-16
983077
A unique differential assembly was needed for the Lawrence Technological University (LTU) SAE Formula race car. Specifically, a differential was required that had torque sensing capabilities, perfect reliability, high strength, light weight, the ability to withstand inertia and shock loading, a small package, no leaks, the ability to support numerous components. In that regard, an existing differential was selected that had the torque sensing capabilities, but had deficiencies that needed to be fixed. Those deficiencies included the following: Differential unit was over 4 kg unmounted, with no housing. This was considered too heavy, when housed properly. Bearing surface was provided on only one end of the carrier. This design provides insufficient bearing surface to support either the differential housing or half-shafts The internal drive splines integral to the case are not optimized for a perpendicular drive/axle arrangement, such as, a chain drive.
Technical Paper

Aerodynamic Shape Improvement Based on Surface Pressure Gradients in the Stream-wise and the Transverse Directions

2010-04-12
2010-01-0511
Aerodynamic forces are the result of various complex viscous flow phenomena such as three-dimensional turbulent boundary layer on the body surfaces, longitudinal vortices induced by three-dimensional boundary layer separation, and high turbulence caused by flow separations. Understanding the flow characteristics and, especially, how the aerodynamic forces are influenced by the changes in the vehicle body shape, are very important in order to improve vehicle aerodynamics (particularly for low drag shapes). The present study was an attempt to provide insights for better understanding of the complex three-dimensional flow field around a vehicle by observing the limiting surface streamlines and the surface pressure gradients in the stream-wise and the transverse directions. The main objective of this work is to provide a comprehensive diagnostic analysis of the basic flow features in order to learn more about the flow separations in three-dimensions.
Technical Paper

Common Rail Multi-Jet Diesel Engine Combustion Development Investigation for MFB50 On-board Estimation

2010-10-25
2010-01-2211
Proper design of the combustion phase has always been crucial for Diesel engine control systems. Modern engine control strategies' growing complexity, mainly due to the increasing request to reduce pollutant emissions, requires on-board estimation of a growing number of quantities. In order to feedback a control strategy for optimal combustion positioning, one of the most important parameters to estimate on-board is the angular position where 50% of fuel mass burned over an engine cycle is reached (MFB50), because it provides important information about combustion effectiveness (a key factor, for example, in HCCI combustion control). In modern Diesel engines, injection patterns are designed with many degrees of freedom, such as the position and the duration of each injection, rail pressure or EGR rate. In this work a model of the combustion process has been developed in order to evaluate the energy release within the cylinder as a function of the injection parameters.
Technical Paper

Exhaust noise design based on psycho-acoustic parameters

2000-06-12
2000-05-0312
People make judgements of the sound produced by vehicles in a variety of situations and contexts. The most common type of assessment is an overall judgement of sound quality like pleasantness and sportiveness. From the car manufacturer''s point of view it is important to note that subjective judgements of sound influence the buyer''s opinion of the performance and value of the vehicle. Consequently, there is a need to quantify the subjective perception of the sound quality associated with a vehicle. This paper presents a study of the sound quality of vehicle exhaust noise based on the correlation between the subjective perception associated with this type of sound and measured psycho-acoustic parameters such as loudness, sharpness and roughness. The tailpipe noise of a selection of representative vehicles was recorded using an artificial head. A subjective evaluation of these sound recordings was made by a jury using standard relative techniques.
Technical Paper

Experimental and Numerical Study of Spray Generated by a High Pressure Gasoline Swirl Injector

2002-10-21
2002-01-2697
Experimental measurements and numerical computations were made to characterize a spray generated by a high-pressure swirl injector. The Phase Doppler technique was applied to get information on droplet sizes (d10) and axial velocities at defined distances from the injector tip. Global spray visualization was also made. Computations were carried out using a modified version of KIVA 3V. In particular, the break-up length of the sheet and its dimension were computed from a semi-empirical correlation related to the wave instability theory suggested by Dombrowski, including the modifications introduced by Han and Reitz. Two different approaches were used to describe the initial spray conditions. According to the first, discrete particles with a characteristic size equal to the thickness of the sheet are injected. The second approach assumes, that the particles having a SMD computed by a semi-empirical correlation are injected according to a statistical distribution.
Technical Paper

DGI - Direct Gasoline Injection Status of Development for Spark-Ignited Engines

2002-11-19
2002-01-3519
The first part of the paper gives an overview of the results obtained with European GDI-powered vehicles launched on the market. Thereafter, a discussion of in-vehicle limitations due to the exhaust gas after-treatment system requirements is given. The paper continues with a description of the current development status of European lean stratified direct injection system layouts. A detailed presentation is made of the mixture preparation system key components, basic control algorithms and the necessary new high-level experimental and analytical development tools. Particularly the topic of the multi-purpose use of 3-D numerical simulation is addressed both in the development and the engine control strategy calibration phases. The development of a small 1.6 liter lean stratified engine project is taken as example to demonstrate the dual application capability of the 3D simulation tool.
Technical Paper

Application of Fatigue Life Prediction Methods for GMAW Joints in Vehicle Structures and Frames

2011-04-12
2011-01-0192
In the North American automotive industry, various advanced high strength steels (AHSS) are used to lighten vehicle structures, improve safety performance and fuel economy, and reduce harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using Gas Metal Arc Welding (GMAW) in the current generation body-in-white structures. Additionally, fatigue failures are most likely to occur at joints subjected to a variety of different loadings. It is therefore critical that automotive engineers need to understand the fatigue characteristics of welded joints. The Sheet Steel Fatigue Committee of the Auto/Steel Partnership (A/S-P) completed a comprehensive fatigue study on GMAW joints of both AHSS and conventional sheet steels including: DP590 GA, SAE 1008, HSLA HR 420, DP 600 HR, Boron, DQSK, TRIP 780 GI, and DP780 GI steels.
Technical Paper

Optical Investigations on a Multiple Spark Ignition System for Lean Engine Operation

2016-04-05
2016-01-0711
The paper reports on the optical investigation of a multiple spark ignition system carried out in a closed vessel in inert gas, and in an optical access engine in firing condition. The ignition system features a plug-top ignition coil with integrated electronics which is capable of multi-spark discharges (MSD) with short dwell time. First, the ignition system has been characterized in constant ambient conditions, at different pressure levels. The profile of the energy released by the spark and the cumulated value has been determined by measuring the fundamental electrical parameters. A high speed camera has been used to visualize the time evolution of the electric arc discharge to highlight its shape and position variability. The multiple spark system has then been mounted on an optical access engine with port fuel injection (PFI) to study the combustion characteristics in lean conditions with single and multiple discharges.
Technical Paper

Regenerative Shock Absorbers and the Role of the Motion Rectifier

2016-04-05
2016-01-1552
The development of suspension systems has seen substantial improvements in the last years due to the use of variable dampers. Furthermore, the efficiency increase in the subsystems within the automotive chassis has led to the use of regenerative solutions, in which electric machines can be employed as generators to recover part of the energy otherwise dissipated. However, the harvesting capability of regenerative suspensions is often limited by friction and inertial phenomena. The former ones waste mechanical energy into heat, while the latter ones hamper the shock absorption by locking the suspension when subject to dynamic excitation. Besides a suitable design and sizing of components, recent research works highlight the use of the so-called motion rectifier to improve energy recovery by constraining the motion of the electric motor to a single sense of rotation.
Technical Paper

NDT of Weld Joints Using Shearographic Interferometry and Dynamic Exciation

2011-04-12
2011-01-0996
Weld Joints are widely used in automotive and aerospace industry. The main issue in the weld joints is the quality inspection to detect the disconnection in the welded area. In this paper, Shearographic technique with dynamic excitation is introduced to test the weld joints. In the experiments, the coupons are of 4 very thin layers of metal sheets welded together. The goal is to find out if there are any disconnections between the layers. They are clamped and then excited by a PZT actuator from behind. A real time digital Shearographic system with a self-refreshed reference image technology has been developed to display the measuring result, i.e. shearogram. A big range of driving frequencies is scanned to find the proper frequency and amplitude that can help to identify the disconnections. The results show that when the driving frequency reaches the resonance frequency, there will be big amplitude and thus a fringe pattern becomes visible on the coupon surface.
Technical Paper

DualMode Sporty Exhaust Development

2011-04-12
2011-01-0926
An exhaust system comprises at least one muffler, the back pressure generated by the muffler exponentially grows as the engine speed increases. Accordingly, fuel consumption and direct CO2 emissions are penalized due to the back pressure generated by the muffling body in order to reduce noise emissions. To obviate this, it has been suggested to construct an exhaust system with two differentiated paths according to the engine speed, so that at low speeds the exhaust gases follow a first high acoustic attenuation (high back pressure) path, while at high speeds (high exhaust gas pressure), the exhaust gases follow a second low acoustic attenuation (low back pressure) path. Simulation and experimental analysis will be presented. A control valve is provided to alternatively direct the exhaust gases along the desired path according to the engine speed. These control valves usually include an electric or electro-pneumatic actuator, but are heavy, large in size and expensive.
X