Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Multidisciplinary Investigation of Truck Platooning

2020-06-30
2020-37-0028
In the age of environmental challenges, and with it the demand for increasing energy efficiency of commercial vehicles, truck platooning is discussed as a promising approach. The idea is several trucks forming an automated convoy - with the lead truck sending out acceleration, braking and steering signals for the following trucks to react accordingly. The benefits address fuel savings, traffic capacity, safety requirements and convenience. In our study, we will motivate why platooning requires a multidisciplinary approach in the sense of connecting different modeling and simulation methods. The simulation topics covered are aerodynamic analysis, vehicle-to-vehicle (V2V) communication, radar antenna placement and virtual drive cycle test for the energy evaluation of a truck platoon in comparison to a single truck.
Technical Paper

Performance Comparison of Drum and Disc Brakes for Heavy Duty Commercial Vehicles

1990-10-01
902206
An alternative to the current drum brakes, with the increased requirements of todays daily service are disc brakes, in that they offer, in contrast to the drum brakes, the following technical advantages and in turn enhance the active safety of modern commercial vehicles when braking: Enhanced brake pedal-feedback and actuation Improved efficiency Little performance losses when high thermal loads occur (fading). In order to be able to determine the improvement potential of disc brakes they will be compared to the commonly employed Simplex drum brakes. Both wheel brake systems (disc-/drum brakes and all variations) were tested on a computer controlled brake dynamometer and in field tests using a heavy duty commercial vehicle (class 8). The results are compared and conclusions drawn regarding “advantages/disadvantages”.
Technical Paper

Passenger Car Exhaust Emission Auditing in Production

1994-03-01
940489
Given the legal requirements for quality assurance of passenger car exhaust emissions worldwide we define our quality assurance system and present the emission laboratories of the Mercedes-Benz assembly plants Sindelfingen and Bremen. We developed a hierarchically structured, multi-level computer system, which enables us to automize emission test procedures, calibration, maintenance of measurement systems and documentation of exhaust data. Test cell computers coordinate the different components of the test cells and perform maintenance and calibration of measurement devices, thus guaranteeing a high measurement quality with reasonable economy. The coordinating level computer, the emission host system (EHS), processes test parameters, controls and supervises the test sequences and evaluates the test results on a statistical basis.
Technical Paper

Spinal Burst or Compression Fractures within Automotive Crashes Due to Vertical Force Components

1997-02-24
970498
The purpose of this research was to present and analyze a previously unreported mechanism of injury within the automotive crash environment - spinal burst or compression fractures due to a vertical force component. Spinal burst fractures are comminuted fractures of the vertebral body which are often associated with retropulsed bone fragments into the spinal. Compression fractures are less traumatic fractures of the vertebral body with minimal comminution. Both fracture types can have varying degrees of neurologic deficit. The mechanism of injury is hypothesized to be a high energy compressive load along the axis of the spine initiated through the buttocks and pelvis or through torso augmentation (inertial loading of the lumbar spine by the torso). Four crashes are presented as evidence of this injury mechanism within the automotive crash environment: two in the United States and two in Germany.
X