Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Concept of “Temperature Swing Heat Insulation” in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat

2013-04-08
2013-01-0274
The aim of this work is to investigate the possibility of heat insulation by “Temperature Swing”, that is temperature fluctuation, on combustion chamber walls coated with low-heat-conductivity and low-heat-capacity materials. Adiabatic engines studied in the 1980s, such as ceramic coated engines, caused constantly high temperature on combustion wall surface during the whole cycle including the intake stroke, even if it employed ceramic thermal barrier coating methods. This resulted in increase in NOx and Soot, decrease in volumetric efficiency and combustion efficiency, and facilitated the occurrence of engine knock. On the other hand, “Temperature Swing” coat on the combustion chamber walls leads to a large change in surface temperature. In this case, the surface temperature with this insulation coat follows the transient gas temperature, which decreases heat loss with the prevention of intake air heating, and also which is expected to prevent NOx and Soot from increasing.
Technical Paper

Thermo-Swing Wall Insulation Technology; - A Novel Heat Loss Reduction Approach on Engine Combustion Chamber -

2016-10-17
2016-01-2333
To improve fuel efficiency of engines, cooling heat loss is one of the most dominant losses among the various engine losses to reduce. The present work proposes a new heat insulation concept in combustion chamber, "TSWIN (Thermo-Swing Wall Insulation Technology)" that can reduce heat loss to the coolant without any sacrifice in other engine performances. Surface temperature of insulation coat on combustion chamber wall changes rapidly, according with the fluctuating temperature of in-cylinder gas. Reduced temperature differences between them lead to lower heat transfer. During the intake stroke, surface temperature of the insulation coat goes down rapidly, and prevents intake air heating. To realize the scheme mentioned above, a new insulation material with both low thermal conductivity and low volumetric heat capacity, "SiRPA (Silica Reinforced Porous Anodized Aluminum)" was developed and applied on the top surface of the piston.
X