Refine Your Search

Topic

Author

Search Results

Journal Article

Proper Orthogonal Decomposition Analysis of Flow Structures Generated around Engine Cooling Fan

2014-04-01
2014-01-0667
A cooling fan is one of the primary components affecting the cooling performance of an engine cooling system. In recent years, with the increase in electric vehicles (EVs) and hybrid vehicles (HVs), the cooling performance and noise level of the cooling fan have become very important. Thus, the development of a low-noise fan with the same cooling performance is urgently required. To address this issue, it is critical to find the relation between the performance of the fan and the flow structures generated around it, which is discussed in the present paper. Specifically, a computational method is employed that uses unsteady Reynolds-averaged Navier-Stokes (URANS) coupling with a sliding mesh (SLM). Measurements of the P-Q (Pressure gain-Flow rate) characteristics are performed to validate the predictive accuracy of the simulation.
Journal Article

Study of Low-Speed Pre-Ignition in Boosted Spark Ignition Engine

2014-04-01
2014-01-1218
This paper analyzes low-speed pre-ignition (LSPI), a sudden pre-ignition phenomenon that occurs in downsized boosted gasoline engines in low engine speed high-load operation regions. This research visualized the in-cylinder state before the start of LSPI combustion and observed the behavior of particles, which are thought to be the ignition source. The research also analyzed pre-ignition by injecting deposit flakes and other combustible particulate substances into the combustion chamber. The analysis found that these particles require at least two combustion cycles to reach a glowing state that forms an ignition source. As a result, deposits peeling from combustion chamber walls were identified as a new mechanism causing pre-ignition. Additionally, results also suggested that the well-known phenomenon in which the LSPI frequency rises in accordance with greater oil dilution may also be explained by an increase in deposit generation.
Journal Article

A Novel Distortion Cancelling Technique Enabling 50-Mbps High Speed Data Transmission for Bus Connected ECUs

2015-04-14
2015-01-0198
With the evolution of automotive features, larger flash program size has been required even at the local electronic control units (ECUs). As the flash programming data rate increases, Ethernet is adopted as a global data port from the external source. However, it can not be applied to the bus type network topology between the domain control unit (DCU) and the local ECUs, because it uses a peer-to-peer type network topology. On the other hand, high speed CAN-FD has been studied recently for this bus topology, but its data rate is limited at the range of several mega bps due to the signal waveform distortion caused by the multiple reflections at the non-terminated stubs. This paper describes a novel distortion cancelling for the bus topology as the pre-emphasis technique, in which the digital signal processing (DSP) compensates the complicated signal distortion caused by the multiple reflections.
Journal Article

Thin-Film Air Flow Sensors for Automotive using the MEMS Technologies

2015-04-14
2015-01-0233
This paper presents two newly developed technologies of optimizing impurity diffusion concentration for silicon semiconductor material and controlling internal stress of the top SiN (Silicon Nitride) layer on a membrane of a silicon substrate to apply them to the manufacturing process of MEMS (Micro Electro Mechanical Systems) type air-flow sensor chips. Until today, in MEMS-type airflow sensors, poly-crystalline silicon (poly-Si) and platinum were widely used as a resistor material of key functional elements on a membrane of air-flow-rate measurement portion. The functional resistors on the membrane are required to monitor high temperatures of about 300 °C and to perform the self-heating operations at that temperature range because of the suppression of contaminant deposition by means of evaporation or incineration.
Journal Article

Mechanism of Low Frequency Idling Vibration in Rear-Wheel Drive Hybrid Vehicle Equipped with THS II

2015-06-15
2015-01-2255
Although idling vibration is usually caused by 1st order of engine combustion force, other engine forces also occur at frequencies lower than the 1st order of combustion (called low frequency idling vibration in this paper). The drive-line of the Toyota Hybrid System II (THS II) has different torsional vibration characteristics compared to a conventional gasoline engine vehicle with an automatic transmission. Nonlinear characteristics caused by the state of backlash of pinions and splines influence changes in the torsional resonance frequency. The torsional resonance frequency of the drive-line can be controlled utilizing the hybrid system controls of the THS II.
Journal Article

Backward Flow of Hot Burned Gas Surrounding High-Pressure Diesel Spray Flame from Multi-hole Nozzle

2015-09-01
2015-01-1837
The backward flow of the hot burned gas surrounding a diesel flame was found to be one of the factors dominating the set-off length (also called the lift-off length), that is, the distance from a nozzle exit into which a diffusion flame cannot intrude. In the combustion chamber of an actual diesel engine, the entrainment of the surrounding gas into a spray jet from a multi-hole nozzle is restricted by the walls and adjacent spray jets, which induces the backward flow of the surrounding gas. A new momentum theory to calculate the backward flow velocity was established by extending Wakuri's momentum theory. Shadowgraph imaging in an optical engine successfully visualized the backward flow of the hot burned gas.
Journal Article

Concept of “Temperature Swing Heat Insulation” in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat

2013-04-08
2013-01-0274
The aim of this work is to investigate the possibility of heat insulation by “Temperature Swing”, that is temperature fluctuation, on combustion chamber walls coated with low-heat-conductivity and low-heat-capacity materials. Adiabatic engines studied in the 1980s, such as ceramic coated engines, caused constantly high temperature on combustion wall surface during the whole cycle including the intake stroke, even if it employed ceramic thermal barrier coating methods. This resulted in increase in NOx and Soot, decrease in volumetric efficiency and combustion efficiency, and facilitated the occurrence of engine knock. On the other hand, “Temperature Swing” coat on the combustion chamber walls leads to a large change in surface temperature. In this case, the surface temperature with this insulation coat follows the transient gas temperature, which decreases heat loss with the prevention of intake air heating, and also which is expected to prevent NOx and Soot from increasing.
Journal Article

Fuel Economy Analysis of Alternator with Kinetic Energy Storage for a Conventional Vehicle

2013-04-08
2013-01-0481
This paper evaluates the effect of our new alternator concept for a conventional vehicle, which is able to generate electricity by storing kinetic energy of the vehicle in the high speed flywheel as rotation energy under deceleration. The alternator constructs a planetary gear device and multiple clutch-brakes perform CVT, alternator and high speed flywheel without an expensive electric device, mechanical CVT and vacuum pump. So it has high cost performance.
Journal Article

Development of CFD Shape Optimization Technology using the Adjoint Method and its Application to Engine Intake Port Design

2013-04-08
2013-01-0969
Computational fluid dynamics (CFD) shape optimization technology is playing an increasingly significant role in the development of products that satisfy various demands, including trade-off relationships. It offers the possibility of designing or improving product shape with respect to a given cost function, subject to geometrical constraints. However, conventional CFD shape optimization technology that uses parametric shape modification has two following issues: (1) expensive computational cost to obtain the final shape, (2) performance variations of the obtained shape depends on the skill or experience of the designer who determined the locations to be modified. In this study, to resolve those problems, an efficient shape optimization technology was developed that uses the adjoint method to perform sensitivity analysis of a cost function on the design parameters. It is composed of a combination of topology optimization and surface geometry optimization.
Journal Article

0W-16 Fuel Economy Gasoline Engine Oil Compatible with Low Speed Pre-Ignition Performance

2017-10-08
2017-01-2346
It has been long established fact that fuel economy is a key driving force of low viscosity gasoline engine oil research and development considered by the original equipment manufacturers (OEMs) and lubricant companies. The development of low viscosity gasoline engine oils should not only focus on fuel economy improvement, but also on the low speed pre-ignition (LSPI) prevention property. In previous LSPI prevention literatures, the necessity of applying Ca/Mg-based detergents system in the engine oil formulations was proposed. In this paper, we adopted a specific Group III base oil containing Ca-salicylate detergent, borated dispersant, Mo-DTC in the formulation and investigated the various effects of Mg-salicylate and Mg-sulfonate on the performance of engine oil. It was found that Mg-sulfonate showed a significant detrimental impact on silicone rubber compatibility while the influence from Mg-salicylate remains acceptable.
Journal Article

Inner Diesel Injector Deposit Formation Mechanism

2013-10-14
2013-01-2661
Higher pressure and higher precision are required for diesel fuel injection equipment in response to increasingly severe emissions control regulations. Market diesel fuels have become more diversified than in the past. Diesel fuel quality has also been changing, being affected by crude oil slate, extreme lowering of sulfur content, and diesel reformulated from heavy fuel oil, among other reasons. As a result of this, deposits thought to have a fuel origin have been observed within diesel fuel injectors in certain regions. Related changes in fuel injection quantity have also been observed. This paper determines injector deposit production mechanisms. It focuses on the structural changes of deposit causative substances by temperature as well as injector design change improvements to prevent deposits.
Technical Paper

Newly Developed Inline 4 AR Series SI Engine

2009-04-20
2009-01-1048
A newly developed AR series 4-cylinder engine has achieved high fuel efficiency through the following: adopting roller rocker arms for the valvetrain system and a variable output oil pump to reduce the friction losses, optimizing the combustion chamber and its cooling system for high compression ratio, and adopting VVT-i (Variable Valve Timing-intelligent) for both intake and exhaust camshafts to enhance thermal efficiency of the engine. Engine torque has been enhanced across the entire range of engine speeds while high performance at low engine speed is achieved by adopting a variable induction intake manifold system (ACIS-III). Output power has been enhanced by making the intake and exhaust systems highly efficient. A hinge type tumble control valves were developed to improve emissions at low temperature by improving combustion when the engine is cold in order to comply with the U.S. Cold-NMHC.
Technical Paper

Adaptation of the Cognitive Avionic Tool Set (CATS) into Automotive Human Machine Interface Design Process

2011-04-12
2011-01-0594
DENSO International America, Inc. and the University of Iowa-Operator Performance Laboratory (OPL) have developed a series of new Multi-Modal Interface for Drivers (MMID) in order to improve driver safety, comfort, convenience and connectivity. Three MMID concepts were developed: GUI 1, GUI 2 and GUI 1-HUD. All three of the MMIDs used a new Reconfigurable Haptic Joystick (RHJ) on the steering wheel and new concept HMI Dual Touch Function Switches (DTFS) device. The DTFS use capacitive and mechanic sensing located on the back of the steering wheel as input operation devices. Inputs from the new controls were combined with a large TFT LCD display in the instrument cluster, a Head Up Display (HUD) and Sound as output devices. The new MMID system was installed in a Lexus LS-430. The climate control panel and radio panels of the LS-430 were used as a baseline condition to which the new designs were compared.
Technical Paper

Estimating Benefits of LDW Systems Applied to Cross-Centerline Crashes

2018-04-03
2018-01-0512
Objective: Opposite-direction crashes can be extremely severe because opposing vehicles often have high relative speeds. The most common opposite direction crash scenario occurs when a driver departs their lane driving over the centerline and impacts a vehicle traveling in the opposite direction. This cross-centerline crash mode accounts for only 4% of all non-junction non-interchange crashes but 25% of serious injury crashes of the same type. One potential solution to this problem is the Lane Departure Warning (LDW) system which can monitor the position of the vehicle and provide a warning to the driver if they detect the vehicle is moving out of the lane. The objective of this study was to determine the potential benefits of deploying LDW systems fleet-wide for avoidance of cross-centerline crashes. Methods: In order to estimate the potential benefits of LDW for reduction of cross-centerline crashes, a comprehensive crash simulation model was developed.
Technical Paper

Automotive Electric System Level Design Methodologies with SystemC

2012-04-16
2012-01-0003
ESL (Electric System Level) Design Methodologies enable us to design and verify various electrical behaviors of automotive electronics including automotive semiconductors on a simulator before hardware prototyping. It could facilitate the optimization of hardware structures, and shorten the total development period by reducing rework process. We propose the “ESL Design Methodologies for Automotive” to renovate conventional development scheme. ESL technology began to be used from the domain of digital consumer electronics. Regarding automotive electronics domain, however, we would not be able to adapt the same methodologies to automotive systems, which consist of many mixed-signal components. Also, another approach is required for the rising demand of safety design sort of functional safety.
Technical Paper

Evaporator with Integrated Ejector for Automotive Cabin Cooling

2012-04-16
2012-01-1048
The ejector is a fluid pump that recovers expansion energy, which is wasted in the conventional refrigeration cycle decompression process, and converts the recovered expansion energy into pressure energy. In the ejector cycle, the ejector helps to reduce power consumption of the compressor by using the above mentioned pressure-rising effect. Consequently, the ejector system can improve energy efficiency of the refrigeration cycle. In previous work, the ejector cycle was used to reduce power consumption in refrigeration cycles for a cool-box (a beverage cooling inside the vehicle) and refrigerated truck box. Both of these applications used the ejector to achieve refrigerant pressure/temperature below the vehicle cabin temperature. Now, the ejector has been integrated into the vehicle cabin evaporator to reduce power consumption of the refrigeration cycle for vehicle cabin cooling.
Technical Paper

Development of Down-sized Motor Stator

2013-04-08
2013-01-1763
Down-sizing and dielectric insulation were required for the traction motors of hybrid vehicles. By utilizing the newly developed coil with thick resin insulation atop the conventional enamel film, the use of conventional inter-phase insulation paper was abolished. Furthermore, by adopting the stair-shaped coil structure and spiral winding configuration, the stator size was minimized. With the above technologies, the motor installation to smaller hybrid vehicles was realized, thus contributing to weight reduction of hybrid vehicles.
Technical Paper

Development of Continuously Variable Transmission Fluid for Fuel Economy

2013-10-14
2013-01-2584
We develop a new metal-belt continuously variable transmission fluid (CVTF) named FE to improve fuel economy and help reduce CO2 emissions. FE is a low-viscosity fluid that reduces friction loss at low temperatures. Low-viscosity fluids generally reduce hardware durability, resulting in reduced metal fatigue life. Therefore, FE is designed for maintaining oil film thickness throughout the life of a vehicle by optimizing the base oil and viscosity modifier. FE also exhibits long-term anti-shudder performance that enables frequent use of controlled-slip torque converter clutches for improving fuel economy, represented by the flex start system, without decreasing torque capacity between the belt and pulley. The key point in the formulation of design is the selection of a suitable friction modifier. A friction modifier is an additive that improves friction properties.
Technical Paper

Consideration of Proper Analysis Method for Car Air-Conditioner's Noise

2014-04-01
2014-01-0044
General analysis methods which are known as Transfer Path Analysis and Air borne Source Quantification have been extended to estimate forces of an air conditioner's parts and also clarify the path from air conditioner system. These results show noise transfer path to be improved. Originally, the existing methods are known to require considerable amount of time for the cause of complicated measurement to get analysis results. In the work of this paper, required measurement is simplified, and time reduction of 50% is achieved without critical decrease in analysis accuracy.
Technical Paper

HVAC Blower Aeroacoustic Predictions

2013-04-08
2013-01-1001
In recent years, vehicle cabin quietness takes a growing importance particularly related to the emergence of hybrid and electric vehicles and “Idle Stop system” vehicles. Demand for quieter car air-conditioner systems is increasingly important also, especially the reduction of the flow-induced noise from the HVAC. In HVAC systems, the rotating blower is one of the main noise sources and the digital solution for predicting and analyzing the blower aeroacoustic noise in the early stage of design is needed for developing a quieter blower. The target of this study is to develop and to validate a flow-induced noise predictive tool for a HVAC blower and to analyze the noise source. In this paper, a low-dissipation, transient, compressible CFD/CAA approach based on the Lattice Boltzmann Method (LBM) is used to predict simultaneously the flow and aeroacoustic radiation of two production blowers.
X