Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2016-32-0041
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Journal Article

Materials Testing for Finite Element Tire Model

2010-04-12
2010-01-0418
The use of accurate tire material properties is a major requirement for conducting a successful tire analysis using finite element method (FEM). Obtaining these material properties however poses a major challenge for tire modelers and researchers due to the complex nature of tire material and associated proprietary protections of constituent material properties by tire manufactures. In view of this limitation, a simple and effective procedure for generating tire materials data used in tire finite element analysis (FEA) is presented in this paper. All the tire test specimens were extracted from a tire product based on special considerations such as specimen dimension and shape, test standard, precondition of specimen and test condition for cords. The required material properties of tire rubber component, including hyperelasticity and viscoelasticity were obtained using simple uni-axial tension test.
Journal Article

An Assessment of the Influence of Gas Turbine Lubricant Thermal Oxidation Test Method Parameters Towards the Development of a New Engine Representative Laboratory Test Method

2013-12-20
2013-01-9004
In the development of a more accurate laboratory scale method, the ability to replicate the thermal oxidative degradation mechanisms seen in gas turbine lubricants, is an essential requirement. This work describes an investigation into the influence of key reaction parameters and the equipment set up upon extent and mechanism of oil degradation. The air flow rate through the equipment was found to be critical to both degradation rate and extent of volatilization loss from the system. As these volatile species can participate in further reactions, it is important that the extent to which they are allowed to leave the test system is matched, where possible, to the conditions in the gas turbine. The presence of metal specimens was shown to have a small influence on the rate of degradation of the lubricant. Loss of metal from the copper and silver specimens due to the mild corrosive effect of the lubricant was seen.
Journal Article

Experimental Investigation of Different Blends of Diesel and Gasoline (Dieseline) in a CI Engine

2014-10-13
2014-01-2686
Combustion behaviour and emissions characteristics of different blending ratios of diesel and gasoline fuels (Dieseline) were investigated in a light-duty 4-cylinder compression-ignition (CI) engine operating on partially premixed compression ignition (PPCI) mode. Experiments show that increasing volatility and reducing cetane number of fuels can help promote PPCI and consequently reduce particulate matter (PM) emissions while oxides of nitrogen (NOx) emissions reduction depends on the engine load. Three different blends, 0% (G0), 20% (G20) and 50% (G50) of gasoline mixed with diesel by volume, were studied and results were compared to the diesel-baseline with the same combustion phasing for all experiments. Engine speed was fixed at 1800rpm, while the engine load was varied from 1.38 to 7.85 bar BMEP with the exhaust gas recirculation (EGR) application.
Journal Article

The Use of a Partial Flow Filter to Assist the Diesel Particulate Filter and Reduce Active Regeneration Events

2014-10-13
2014-01-2806
This study investigates the potential of using a partial flow filter (PFF) to assist a wall flow diesel particulate filter (DPF) and reduce the need for active regeneration phases that increase engine fuel consumption. First, the filtration efficiency of the PFF was studied at several engine operating conditions, varying the filter space velocity (SV), through modification of the exhaust gas flow rate, and engine-out particulate matter (PM) concentration. The effects of these parameters were studied for the filtration of different particle size ranges (10-30 nm, 30-200 nm and 200-400 nm). For the various engine operating conditions, the PFF showed filtration efficiency over 25% in terms of PM number and mass. The PFF filtration behaviour was also investigated at idle engine operation producing a high concentration of nuclei particulates for which the filter was able to maintain 60% filtration efficiency.
Technical Paper

Experimental Investigation of Injection Pressure Fluctuations Employing Alternative Fuels

2020-09-15
2020-01-2122
Injection pressure oscillations are proven to determine considerable deviations from the expected mass flow rate, leading to the jet velocities non-uniformity, which in turn implies the uneven spatial distribution of A/F ratio. Furthermore, once the injector is triggered, these oscillations might lead the rail pressure to experience a decreasing stage, to the detriment of spray penetration length, radial propagation and jet break-up timing. This has urged the research community to develop models predicting injection-induced pressure fluctuations within the rail. Additionally, several devices have been designed to minimize and eliminate such fluctuations. However, despite the wide literature dealing with the injection-induced pressure oscillations, many aspects remain still unclear. Moreover, the compulsory compliance with environmental regulations has shifted focus onto alternative fuels, which represent a promising pathway for sustainable vehicle mobility.
Journal Article

A Coupled Eulerian Lagrangian Finite Element Model of Drilling Titanium and Aluminium Alloys

2016-09-27
2016-01-2126
Despite the increasing use of carbon fibre reinforced plastic (CFRP) composites, titanium and aluminium alloys still constitute a significant proportion of modern civil aircraft structures, which are primarily assembled via mechanical joining techniques. Drilling of fastening holes is therefore a critical operation, which has to meet stringent geometric tolerance and integrity criteria. The paper details the development of a three-dimensional (3D) finite element (FE) model for drilling aerospace grade aluminium (AA7010-T7451 and AA2024-T351) and titanium (Ti-6Al-4V) alloys. The FE simulation employed a Coupled Eulerian Lagrangian (CEL) technique. The cutting tool was modelled according to a Lagrangian formulation in which the mesh follows the material displacement while the workpiece was represented by a non-translating and material deformation independent Eulerian mesh.
Journal Article

The Effect of Exhaust Throttling on HCCI - Alternative Way to Control EGR and In-Cylinder Flow

2008-06-23
2008-01-1739
Homogeneous Charge Compression Ignition (HCCI) has emerged as a promising technology for reduction of exhaust emissions and improvement of fuel economy of internal combustion engines. There are generally two proposed methods of realizing the HCCI operation. The first is through the control of gas temperature in the cylinder and the second is through the control of chemical reactivity of the fuel and air mixture. EGR trapping, i.e., recycling a large quantity of hot burned gases by using special valve-train events (e.g. negative valve overlap), seems to be practical for many engine configurations and can be combined with any of the other HCCI enabling technologies. While this method has been widely researched, it is understood that the operating window of the HCCI engine with negative valve overlap is constrained, and the upper and lower load boundaries are greatly affected by the in-cylinder temperature.
Journal Article

Investigation on Transient Emissions of a Turbocharged Diesel Engine Fuelled by HVO Blends

2013-04-08
2013-01-1307
Transient emissions of a turbocharged three-litre V6 diesel engine fuelled by hydrogenated vegetable oil (HVO) blends were experimentally investigated and compared with transient emissions of diesel as reference. The transient emissions measurements were made by highly-dynamic emissions instrumentations including Cambustion HFR500, CLD500 and DMS500 particulate analyzer. The HVO blends used in this study were 30% and 60% of HVO in diesel by volume. The transient conditions were simulated by load increases over 5 s, 10 s and 20 s durations at a constant engine speed. The particulate, NO, HC concentrations were measured to investigate the mechanism of emission formation under such transient schedules. The results showed that as the load increased, NO concentrations initially had a small drop before dramatically increasing for all the fuels investigated which can be associated with the turbocharger lag during the load transient.
Technical Paper

Lower Extremity Injuries in Frontal Crashes: Injuries, Locations, AIS and Contacts

1991-02-01
910811
Frontal crashes (11-1 o'clock) were reviewed from the National Accident Severity Study file (NASS) for years 1980-87. Adult drivers and front right passengers, with lower extremity injuries of the pelvis, thigh, knee, leg or ankle/foot were reviewed. Analysis of age differences, injury contacts, and effectiveness of the 3-point restraint system were studied. Unrestrained drivers have a higher frequency of knee injuries than passengers, fewer leg injuries than passengers and both have the same frequency of ankle/foot injuries. Older unbelted drivers have more injuries to the pelvis, leg, and ankle/foot region than do young drivers. Passengers have more leg injuries. The instrument panel is the major contact for most of the lower extremity injuries. Lap/shoulder belts significantly reduce lower extremity injury frequency.
Journal Article

Dual-Injection as a Knock Mitigation Strategy Using Pure Ethanol and Methanol

2012-04-16
2012-01-1152
For spark ignition (SI) engines, the optimum spark timing is crucial for maximum efficiency. However, as the spark timing is advanced, so the propensity to knock increases, thus compromising efficiency. One method to suppress knock is to use high octane fuel additives. However, the blend ratio of these additives cannot be varied on demand. Therefore, with the advent of aggressive downsizing, new knock mitigation techniques are required. Fortuitously, there are two well-known lower alcohols which exhibit attractive knock mitigation properties: ethanol and methanol. Both not only have high octane ratings, but also result in greater charge-cooling than with gasoline. In the current work, the authors have exploited these attractive properties with the dual-injection, or the dual-fuel concept (gasoline in PFI and fuel additive in DI) using pure ethanol and methanol.
Journal Article

Effects of Combustion Phasing, Injection Timing, Relative Air-Fuel Ratio and Variable Valve Timing on SI Engine Performance and Emissions using 2,5-Dimethylfuran

2012-04-16
2012-01-1285
Ethanol has long been regarded as the optimal gasoline-alternative biofuel for spark-ignition (SI) engines. It is used widely in Latin and North America and is increasingly accepted as an attractive option across Europe. Nevertheless, its low energy density requires a high rate of manufacture; in areas which are deficient of arable land, such rates might prove problematic. Therefore, fuels with higher calorific values, such as butanol or 2,5-dimethylfuran (DMF) deserve consideration; a similar yield to ethanol, in theory, would require much less land. This report addresses the suitability of DMF, to meet the needs as a biofuel substitute for gasoline in SI engines, using ethanol as the biofuel benchmark. Specific attention is given to the sensitivity of DMF to various engine control parameters: combustion phasing (ignition timing), injection timing, relative air-fuel ratio and valve timing (intake and exhaust).
Journal Article

Interrogating the surface: the effect of blended diesel fuels on lubricity

2011-08-30
2011-01-1940
The lubricating properties of two sustainable alternative diesels blended with ultra low sulphur diesel (ULSD) were investigated. The candidate fuels were a biodiesel consisting of fatty acid methyl esters derived from rapeseed (RME) and gas-to-liquid (GTL). Lubricity tests were conducted on a high frequency reciprocating rig (HFRR). The mating specimen surfaces were analysed using optical microscopy and profilometery for wear scar diameters and profiles respectively. Microscopic surface topography and deposit composition was evaluated using a scanning electronic microscope (SEM) with an energy dispersive spectrometer (EDS). Like all modern zero sulphur diesel fuel (ZSD), GTL fuels need a lubricity agent to meet modern lubricity specifications. It has been proven that GTL responds well to typical lubricity additives in the marketplace.
Journal Article

Modelling of Soot Oxidation by NO2 in a Diesel Particulate Filter

2011-08-30
2011-01-2083
Two approaches were adopted to study soot oxidation by NO₂; firstly microreactor tests were performed on soot produced by a soot generator over a range of NO₂ concentrations and temperatures. This enabled measurement to be made under well-controlled conditions. Secondly, soot oxidation measurements were made on an engine bench to obtain data under more realistic, if less controlled, conditions. In the microreactor work NO₂ consumption by soot oxidation and the selectivity of the soot oxidation to CO and CO₂ were measured. The latter was found to vary only slightly with temperature and to be independent of NO₂ concentration. By modeling this data using a 1-dimensional model, rate equations for the soot-NO₂ reaction were determined. These were then tested against the engine data. The soot used in this study was characterized by thermogravimetric analysis, N₂ physisorption and transmission electron microscopy.
Journal Article

An Investigation into the Characteristics of DISI Injector Deposits Using Advanced Analytical Methods

2014-10-13
2014-01-2722
There is an increasing recognition of injector deposit (ID) formation in fuel injection equipment as direct injection spark ignition (DISI) engine technologies advance to meet increasingly stringent emission legislation and fuel economy requirements. While it is known that the phenomena of ID in DISI engines can be influenced by changes in fuel composition, including increasing usage of aliphatic alcohols and additive chemistries to enhance fuel performance, there is however still a great deal of uncertainty regarding the physical and chemical structure of these deposits, and the mechanisms of deposit formation. In this study, a mechanical cracking sample preparation technique was developed to assess the deposits across DISI injectors fuelled with gasoline and blends of 85% ethanol (E85).
Journal Article

Low Ambient Temperature Effects on a Modern Turbocharged Diesel engine running in a Driving Cycle

2014-10-13
2014-01-2713
Engine transient operation has attracted a lot of attention from researchers due to its high frequency of occurrence during daily vehicle operation. More emissions are expected compared to steady state operating conditions as a result of the turbo-lag problem. Ambient temperature has significant influences on engine transients especially at engine start. The effects of ambient temperature on engine-out emissions under the New European Driving Cycle (NEDC) are investigated in this study. The transient engine scenarios were carried out on a modern 3.0 L, V6 turbocharged common rail diesel engine fuelled with winter diesel in a cold cell within the different ambient temperature ranging between +20 °C and −7 °C. The engine with fuel, coolant, combustion air and lubricating oil were soaked and maintained at the desired test temperatures during the transient scenarios.
Journal Article

High Speed Imaging Study on the Spray Characteristics of Dieseline at Elevated Temperatures and Back Pressures

2014-04-01
2014-01-1415
Dieseline combustion as a concept combines the advantages of gasoline and diesel by offline or online blending the two fuels. Dieseline has become an attractive new compression ignition combustion concept in recent years and furthermore an approach to a full-boiling-range fuel. High speed imaging with near-parallel backlit light was used to investigate the spray characteristics of dieseline and pure fuels with a common rail diesel injection system in a constant volume vessel. The results were acquired at different blend ratios, and at different temperatures and back pressures at an injection pressure of 100MPa. The penetrations and the evaporation states were compared with those of gasoline and diesel. The spray profile was analyzed in both area and shape with statistical methods. The effect of gasoline percentage on the evaporation in the fuel spray was evaluated.
Technical Paper

Biomechanical Investigation of Airbag-Induced Upper-Extremity Injuries

1997-11-12
973325
The factors that influence airbag-induced upper-extremity injuries sustained by drivers were investigated in this study. Seven unembalmed human cadavers were used in nineteen direct-forearm-interaction static deployments. A single horizontal-tear-seam airbag module and two different inflators were used. Spacing between the instrumented forearm and the airbag module was varied from 10 cm to direct contact in some tests. Forearm-bone instrumentation included triaxial accelerometry, crack detection gages, and film targets. Internal airbag pressure was also measured. The observed injuries were largely transverse, oblique, and wedge fractures of the ulna or radius, or both, similar to those reported in field investigations. Tears of the elbow joint capsule were also found, both with and without fracture of the forearm.
Technical Paper

Development of an Improved Driver Eye Position Model

1998-02-23
980012
SAE Recommended Practice J941 describes the eyellipse, a statistical representation of driver eye locations, that is used to facilitate design decisions regarding vehicle interiors, including the display locations, mirror placement, and headspace requirements. Eye-position data collected recently at University of Michigan Transportation Research Institute (UMTRI) suggest that the SAE J941 practice could be improved. SAE J941 currently uses the SgRP location, seat-track travel (L23), and design seatback angle (L40) as inputs to the eyellipse model. However, UMTRI data show that the characteristics of empirical eyellipses can be predicted more accurately using seat height, steering-wheel position, and seat-track rise. A series of UMTRI studies collected eye-location data from groups of 50 to 120 drivers with statures spanning over 97 percent of the U.S. population. Data were collected in thirty-three vehicles that represent a wide range of vehicle geometry.
Technical Paper

Standing Reach Envelopes Incorporating Anthropometric Variance and Postural Cost

2007-06-12
2007-01-2482
Standing reach envelopes are important tools for the design of industrial and vehicle environments. Previous work in this area has focussed on manikin-based (where a few manikins are used to simulate individuals reaching within the region of interest) and population-based (where data are gathered on many individuals reaching in a constrained environment) approaches. Each of these methods has merits and shortfalls. The current work bridges the manikin- and population-based approaches to assessing reach by creating population models using kinematic simulation techniques driven by anthropometric data. The approach takes into account body dimensions, balance, and postural cost to create continuous models that can be used to assess designs with respect to both maximal and submaximal reaches. Cost is quantified as the degree to which the torso is involved in the reach, since the inclination of the torso is a good measure of lower-back load and may be related to subjective reach difficulty.
X