Criteria

Text:
Display:

Results

Viewing 1 to 30 of 83
2013-10-22
WIP Standard
AIR5654A
This handbook is intended to accompany or incorporate AS5643 IEEE-1394b Interface Requirements for Military and Aerospace Vehicle Applications, AS5643/1 S400 Copper Media Interface Characteristics over Extended Distances, AS5657 Test Plan/Procedure for AS5643 IEEE-1394b Interface Requirements for Military and Aerospace Vehicle Applications, AS5706 Test Plan/procedure for AS5643/1 S400 Copper Media Interface Characteristics Over Extended Distances, and ARD5708 Frequently Asked Questions about IEEE-1394b and SAE AS5643. In addition, full understanding of this handbook also requires knowledge of IEEE-1394-1995, IEEE-1394a and IEEE-1394b standards. This handbook contains detailed explanations and architecture analysis on AS5643, bus timing and scheduling considerations, system redundancy design considerations, suggestions on AS5643-based system configurations, cable selection guidance, and lessons learned on failure modes.
2012-04-24
WIP Standard
AS6260
This document establishes techniques for validating that an Network Terminal (NT), Network Controller (NC), and Switch complies with the physical layphysrequirements delineated in AS5653. The purpose of this document is to provide methods for validating that the NTs, NCs, and Switches complies with the physical requirements of AS5653. This document provides a modular, independent set of methods for each of the physical layer requirements in AS5653 that applies to a NTs, NCs, and Switches.
2013-10-22
WIP Standard
AS5657A
This document establishes test plans/procedures for the AS5643 Standard that by itself defines guidelines for the use of IEEE-1394b as a data bus network in military and aerospace vehicles. This test specification defines procedures and criteria for testing device compliance with the AS5643 Standard.
2013-11-19
WIP Standard
AS5643/1A
This SAE Aerospace Standard (AS) establishes guidelines for the use of IEEE-1394b as a data bus network in military and aerospace vehicles. It encompasses the data bus cable and its interface electronics for a system utilizing S400 over copper medium over extended lengths. This document contains extensions/restrictions to "off-the-shelf " IEEE-1394 standards, and assumes that the reader already has a working knowledge of IEEE-1394. This document does not identify specific environmental requirements (electromagnetic compatibility, temperature, vibration, etc.); such requirements will be vehicle-specific and even LRU-specific. However, the hardware requirements and examples contained herein do address many of the environmental conditions that military and aerospace vehicles may experience. One should reference the appropriate sections of MIL-STD-461E for their particular LRU, and utilize handbooks such as MIL-HDBK-454A and MIL-HDBK-5400 for guidance.
2013-11-05
WIP Standard
AS5706A
This document establishes test plans/procedures for the AS5643/1 Slash Sheet. The AS5643/1 Slash Sheet establishes guidelines for the use of IEEE-1394b as a data bus network in military and aerospace vehicles. It encompasses the data bus cable and its interface electronics for a system utilizing S400 over copper medium over extended lengths.
2009-11-23
WIP Standard
AS6088
This document establishes techniques for validating that an Network Terminal (NT) complies with the requirements delineated in AS5653. The purpose of this document is to provide methods for validating that the Network Terminal complies with the Network Controller requirements of AS5653. This document provides a modular, independent set of methods for each of the requirements in AS5653 that applies to a Network Terminal.
2009-11-23
WIP Standard
AS6090
This document establishes techniques for validating that an Fibre Channel Switch complies with the requirements delineated in AS5653. The purpose of this document is to provide methods for validating that the Fibre Channel Switch complies with the Fibre Channel Switch requirements of AS5653. This document provides a modular, independent set of methods for each of the requirements in AS5653 that applies to a Fibre Channel Switch.
2015-04-14
WIP Standard
AS6509
Fibre Channel is the primary avionics bus on many modern military aircraft. It is also the defined High-Speed bus for MIL-STD-1760E weapons applications. Profiled Ethernet networks are the primary avionics bus in many commercial aircraft and Commercial Ethernet is an ever increasing presence in modern military aircraft as well. This network standard is a convergence of Fibre Channel and Ethernet into a unified network standard which will provide a seamless approach to integrating end systems from either technology into a merged network structure. This work is based upon the commercial data storage market industry’s work on the Converged Data Storage Network or FCoE (Fibre Channel over Ethernet). This effort will look at profiling the FCoE work done in the commercial industry and adding information where necessary to affect a networking standard that will seamlessly integrate end systems from Commercial Ethernet, Fibre Channel, or FCoE enhanced devices.
2017-08-01
WIP Standard
ARP7208
This ARP establishes guidelines for the use of IEEE-802.3 as a data bus network in military and aerospace vehicles. It encompasses the data cable and its connections for a system utilizing 10Base-T, 100Base-T, 1000BASE-T and 10GBASE-T over copper medium dependent interfaces (MDI). This document contains extensions/restrictions to “off-the-shelf” IEEE-802.3 standards, and assumes that the reader already has a working knowledge of IEEE-802.3.
CURRENT
2017-03-21
Standard
AS15531A
This SAE Aerospace Standard (AS) contains requirements for a digital time division command/response multiplex data bus, for use in systems integration, that is functionally equivalent to MIL-STD-1553B with Notice 2. Even with the use of this document, differences may exist between multiplex data buses in different system applications due to particular application requirements and the options allowed in this document. The system designer must recognize this fact and design the multiplex bus controller (BC) hardware and software to accommodate such differences. These designer selected options must exist to allow the necessary flexibility in the design of specific multiplex systems in order to provide for the control mechanism, architectural redundancy, degradation concept, and traffic patterns peculiar to the specific application requirements.
CURRENT
2010-03-09
Standard
AS1393
This standard establishes the design requirements for a fiber optic serial interconnect protocol, topology, and media. The application target for this standard is the interconnection of multiple aerospace sensors, processing resources, bulk storage resources and communications resources onboard aerospace platforms. The standard is for subsystem interconnection, as opposed to intra-backplane connection.
CURRENT
2016-10-21
Standard
AIR4271A
This Aerospace Information Report (AIR) has been prepared by the Systems Applications and Requirements Subcommittee of SAE Committee AS-2. It is intended to provide guidance primarily, but not exclusively, for specifiers and designers of data communication systems for real time military avionics applications within a platform. The subject of high speed data transmission is addressed from two standpoints: (1) the influence of developments in technology on avionics architectures as a whole and (2) the way in which specific problems, such as video, voice, closed loop control, and security may be handled. While the material has been prepared against a background of experience within SAE AS-2 relating to the development of a family of high speed interconnect standards, reference to specific standards and interconnect systems is minimized.
HISTORICAL
2007-02-21
Standard
AIR5683
MIL-STD-1553 establishes requirements for digital command/response time division multiplexing (TDM) techniques on military vehicles, especially aircraft. The existing MIL-STD-1553 network operates at a bit rate of 1 Mbps and is limited by the protocol to a maximum data payload capacity of approximately 700 kilobits per second. The limited capacity of MIL-STD-1553 buses coupled with emerging data rich applications for avionics platforms plus the expense involved with changing or adding wires to thousands of aircraft in the fleet has driven the need for expanding the data carrying capacity of the existing MIL-STD-1553 infrastructure.
CURRENT
2016-10-21
Standard
AIR5683A
MIL-STD-1553 establishes requirements for digital command/response time division multiplexing (TDM) techniques on military vehicles, especially aircraft. The existing MIL-STD-1553 network operates at a bit rate of 1 Mbps and is limited by the protocol to a maximum data payload capacity of approximately 700 kilobits per second. The limited capacity of MIL-STD-1553 buses coupled with emerging data rich applications for avionics platforms plus the expense involved with changing or adding wires to thousands of aircraft in the fleet has driven the need for expanding the data carrying capacity of the existing MIL-STD-1553 infrastructure.
CURRENT
2012-05-03
Standard
AIR4288A
This document is intended to explain, in detail, the rationale behind the features and functions of the AS4074, Linear, Token-passing, Bus (LTPB). The discussions also address the considerations which a system designer should take into account when designing a system using this bus. Other information can be found in these related documents: AIR4271 - Handbook of System Data Communication AS4290 - Validation Test Plan for AS4074
CURRENT
2016-10-21
Standard
AIR4295A
This document contains guidance for using SAE publications, AS4112 through AS4117 (MIL-STD-1553 related Test Plans). Included herein are the referenced test plan paragraphs numbers and titles, the purpose of the test, the associated MIL-STD-1553 paragraph, commentary concerning test methods and rationale, and instrumentation requirements.
CURRENT
2012-05-03
Standard
AIR4980A
The original purpose of this document was to establish interface requirements for modular avionics backplanes to be prototyped up to 1995. The document was issued as ARD50011 in September 1992. It is being reissued as an SAE Aerospace Information Report (AIR) in order to: Preserve the requirements for more than 2 years Support design of retrofits and avionics systems to be fielded in the years 1995 to 2000 Provide a baseline for updating the requirements of future integrated systems These requirements were and are intended to promote standardization of modular avionic backplane interfaces. These requirements have been driven predominantly, but not exclusively, by aerospace type military platforms.
CURRENT
2016-10-21
Standard
AIR4886A
The purpose of this document is to establish the requirements for Real-Time Communication Protocols (RTCP). Systems for real-time applications are characterized by the presence of hard deadlines where failure to meet a deadline must be considered a system fault. These requirements have been driven predominantly, but not exclusively, by aerospace type military platforms and commercial aircraft, but are generally applicable to any distributed, real-time, control systems. These requirements are primarily targeted for the Transport and Network Layers of peer to peer protocols, as referenced in the Open System Interconnect Reference Model (2.2.1 and 2.2.2), developed by the International Standards Organization (ISO). These requirements are intended to complement SAE AS4074 (2.1.1) and AS4075 (2.1.2), and future SAE communications standards.
CURRENT
2004-12-30
Standard
AS5643/1
This SAE Aerospace Standard (AS) establishes guidelines for the use of IEEE-1394b as a data bus network in military and aerospace vehicles. It encompasses the data bus cable and its interface electronics for a system utilizing S400 over copper medium over extended lengths. This document contains extensions/restrictions to “off-the-shelf” IEEE-1394 standards, and assumes that the reader already has a working knowledge of IEEE-1394. This document does not identify specific environmental requirements (electromagnetic compatibility, temperature, vibration, etc.); such requirements will be vehicle-specific and even LRU-specific. However, the hardware requirements and examples contained herein do address many of the environmental conditions that military and aerospace vehicles may experience. One should reference the appropriate sections of MIL-STD-461E for their particular LRU, and utilize handbooks such as MIL-HDBK-454A and MIL-HDBK-5400 for guidance.
CURRENT
2007-02-21
Standard
AS5657
This document establishes test plans/procedures for the AS5643 Standard that by itself defines guidelines for the use of IEEE-1394b as a data bus network in military and aerospace vehicles. This test specification defines procedures and criteria for testing device compliance with the AS5643 Standard.
CURRENT
2007-05-01
Standard
AS5706
This document establishes test plans/procedures for the AS5643/1 Slash Sheet. The AS5643/1 Slash Sheet establishes guidelines for the use of IEEE-1394b as a data bus network in military and aerospace vehicles. It encompasses the data bus cable and its interface electronics for a system utilizing S400 over copper medium over extended lengths.
HISTORICAL
1995-11-01
Standard
AS15531
This SAE Aerospace Standard (AS) contains requirements for a digital time division command/response multiplex data bus, for use in systems integration, that is functionally equivalent to MIL-STD-1553B with Notice 2. Even with the use of this document, differences may exist between multiplex data buses in different system applications due to particular application requirements and the options allowed in this document. The system designer must recognize this fact and design the multiplex bus controller (BC) hardware and software to accommodate such differences. These designer selected options must exist to allow the necessary flexibility in the design of specific multiplex systems in order to provide for the control mechanism, architectural redundancy, degradation concept, and traffic patterns peculiar to the specific application requirements.
HISTORICAL
1996-11-01
Standard
AIR4980
The original purpose of this document was to establish interface requirements for modular avionics backplanes to be prototyped up to 1995. The document was issued as ARD50011 in September 1992. It is being reissued as an SAE Aerospace Information Report (AIR) in order to: Preserve the requirements for more than 2 years Support design of retrofits and avionics systems to be fielded in the years 1995 to 2000 Provide a baseline for updating the requirements of future integrated systems These requirements were and are intended to promote standardization of modular avionic backplane interfaces. These requirements have been driven predominantly, but not exclusively, by aerospace type military platforms.
HISTORICAL
1992-12-30
Standard
AIR4288
This document is intended to explain, in detail, the rationale behind the features and functions of the AS4074, Linear, Token-passing, Bus (LTPB). The discussions also address the considerations which a system designer should take into account when designing a system using this bus. Other information can be found in these related documents:
HISTORICAL
1995-02-01
Standard
AIR4289
This Handbook has been prepared by the Ring Implementation Task Group of the SAE AS-2 Committee, and is intended to support AS4075 by providing explanation of the standard itself and guidance on its use. The principal objective in the preparation of a standard is to provide a statement of operational and performance requirements, and an unambiguous definition of the functions to be realized in any implementation, primarily from the view point of interoperability. While efforts have been made within the AS4075 standard to provide a readable general description of the HSRB, detailed explanations, rationale and guidance to the use are incompatible with the purpose and, indeed, the format of a standard. Accordingly, this Handbook contains a paragraph-by-paragraph explanation of the main sections of the standard, and a discussion of application and implementation issues.
CURRENT
2012-05-03
Standard
AIR4289A
This Handbook has been prepared by the Ring Implementation Task Group of the SAE AS-2 Committee, and is intended to support AS4075 by providing explanation of the standard itself and guidance on its use. The principal objective in the preparation of a standard is to provide a statement of operational and performance requirements, and an unambiguous definition of the functions to be realized in any implementation, primarily from the view point of interoperability. While efforts have been made within the AS4075 standard to provide a readable general description of the HSRB, detailed explanations, rationale and guidance to the use are incompatible with the purpose and, indeed, the format of a standard. Accordingly, this Handbook contains a paragraph-by-paragraph explanation of the main sections of the standard, and a discussion of application and implementation issues.
HISTORICAL
1992-10-30
Standard
AIR4295
This document contains guidance for using SAE publications, AS4112 through AS4117 (MIL-STD-1553 related Test Plans). Included herein are the referenced test plan paragraphs numbers and titles, the purpose of the test, the associated MIL-STD-1553 paragraph, commentary concerning test methods and rationale, and instrumentation requirements.
CURRENT
2009-04-01
Standard
AIR5654
This handbook is intended to accompany or incorporate AS5643 IEEE-1394b Interface Requirements for Military and Aerospace Vehicle Applications, AS5643/1 S400 Copper Media Interface Characteristics over Extended Distances, AS5657 Test Plan/Procedure for AS5643 IEEE-1394b Interface Requirements for Military and Aerospace Vehicle Applications, AS5706 Test Plan/procedure for AS5643/1 S400 Copper Media Interface Characteristics Over Extended Distances, and ARD5708 Frequently Asked Questions about IEEE-1394b and SAE AS5643. In addition, full understanding of this handbook also requires knowledge of IEEE-1394-1995, IEEE-1394a and IEEE-1394b standards. This handbook contains detailed explanations and architecture analysis on AS5643, bus timing and scheduling considerations, system redundancy design considerations, suggestions on AS5643-based system configurations, cable selection guidance, and lessons learned on failure modes.
HISTORICAL
1990-10-25
Standard
ARP4258
The purpose of this Aerospace Recommended Practice (ARP) is to provide recommendations on the use of four types of discrete signal interfaces for unidirectional, low power, low frequency transmission of discrete information.
CURRENT
2006-05-22
Standard
ARP4258A
The purpose of this Aerospace Recommended Practice (ARP) is to provide recommendations on the use of four types of discrete signal interfaces for unidirectional, low power, low frequency transmission of discrete information.
Viewing 1 to 30 of 83