Refine Your Search

Search Results

Viewing 1 to 15 of 15
Journal Article

Development of Common Rail and Manifold Fluid Delivery Systems for Large Diesel Engine Aftertreatement

2012-09-24
2012-01-1961
EPA 2015 Tier IV emission requirements pose significant challenges to large diesel engine aftertreatment system (EAS) development aimed at reducing exhaust emissions such as NOx and PM. An EAS has three primary subsystems, Aftertreatment hardware, controls and fluid delivery. Fluid delivery is the subsystem which supplies urea into exhaust stream to allow SCR catalytic reaction and/or periodic DOC diesel dosing to elevate exhaust temperatures for diesel particulate filter (DPF) soot regeneration. The purpose of this paper is to discuss various aspects of fluid delivery system development from flow and pressure perspective. It starts by giving an overview of the system requirements and outlining theoretical background; then discusses overall design considerations, injector and pump selection criteria, and three main injector layouts. Steady state system performance was studied for manifold layout.
Technical Paper

CFD Modeling of Urea Spray and Deposits for SCR Systems

2016-09-27
2016-01-8077
Selective Catalytic Reduction (SCR) has become a mainstream approach to reduce diesel engine NOx emissions. Urea Water Solution (UWS) injection and interactions with mixers and exhaust gases affect the homogeneity of ammonia distribution at catalyst inlet and solid deposits formation on walls / mixer surfaces, therefore influencing SCR performance and durability. Computational Fluid Dynamics (CFD) is used to simulate an EU V compliant SCR system with a dual baffle mixer for heavy duty diesel engines. The modeling procedure is carried out by a multi-dimensional CFD code CONVERGE that includes transient urea transport processes in an exhaust flow configuration, detailed spray break-up, evaporation, wall-film, turbulence, and Conjugate Heat Transfer (CHT) models as well as an automated mesh generation approach. Locations of urea deposits and system pressure drop are predicted and validated against measurements, providing uniformity index (UI) predictions at the catalyst inlet.
Technical Paper

Design Optimization of An Integrated SCR System for EU V Heavy Duty Diesel Engines

2016-04-05
2016-01-0945
Selective Catalytic Reduction (SCR) based on urea water solution (UWS) has become a promising technology to reduce Nitrogen Oxides (NOx) emissions for mobile applications. However, urea may undergo incomplete evaporations, resulting in formation of solid deposits on the inner surfaces including walls and mixers, limiting the transformation of urea to ammonia and chemical reaction between NOx and ammonia. Numerous design parameters of SCR system affect the formation of urea deposits [1] ; they are: exhaust condition, injector type, injector mounting angle, geometrical configurations of mixer, injection rate and etc. Research has been available in urea deposits, mixers, urea injection rates and others [2,4,5,6]. In this paper, focus is placed on improving mixing structure design from baseline design of EU IV to EU V. On-road tests indicate that deposits are highly likely to occur near locations where spray and exhaust gas interact most.
Technical Paper

CFD Optimization of Exhaust Manifold for Large Diesel Engine Aftertreatment Systems

2011-09-13
2011-01-2199
To meet EPA Tier IV large diesel engine emission targets, intensive development efforts are necessary to achieve NOx reduction and Particulate Matter (PM) reduction targets [1]. With respect to NOx reduction, liquid urea is typically used as the reagent to react with NOx via SCR catalyst [2]. Regarding to PM reduction, additional heat is required to raise exhaust temperature to reach DPF active / passive regeneration performance window [3]. Typically the heat can be generated by external diesel burners which allow diesel liquid droplets to react directly with oxygen in the exhaust gas [4]. Alternatively the heat can be generated by catalytic burners which enable diesel vapor to react with oxygen via DOC catalyst mostly through surface reactions [5].
Technical Paper

Development of Urea SCR Systems for Large Diesel Engines

2011-09-13
2011-01-2204
EPA 2015 Tier IV emission requirements pose significant challenges to large diesel engine after treatment system development with respect to reducing exhaust emissions including HC, CO, NOx and Particulate Matter (PM). For a typical locomotive, marine or stationary generator engine with 8 to 20 cylinders and 2500 to 4500 BHP, the PM reduction target could be over 90% and NOx reduction target over 75% for a wide range of running conditions. Generally, HC, CO and PM reductions can be achieved by combining DOC, cDPF and active regeneration systems. NOx reduction can be achieved by injecting urea as an active reagent into the exhaust stream to allow NOx to react with ammonia per SCR catalysts, as the mainstream approach for on-highway truck applications.
Technical Paper

Development of Air-Assisted Urea Injection Systems for Medium Duty Trucks

2017-09-04
2017-24-0112
Urea injection is required to meet EU IV to EU VI emission regulations as a main stream technical route to reduce nitrogen oxides (NOx). In heavy and medium duty trucks, compressed air at 3-5 bar is often available, therefore can assist urea injection by mixing with urea, forming liquid droplets, and releasing mixed fluid into the exhaust gases. The development of air assisted urea pump and injectors, or the assembly, seemingly simpler than airless counterparts, however poses multiple challenges. One challenge is to properly mix urea in the mixing chamber inside pump with the compressed air, leaving no residual deposits while achieving high mixing efficiency. Another is to maintain good spray quality for a given length of delivery pipe as the liquid phase and gas phase tend to coalesce as they propagate along the pipe flow direction. In addition, the urea pump and injector need to provide robust and reliable performance under stringent road conditions.
Technical Paper

Design Improvements of Urea SCR Mixing for Medium-Duty Trucks

2013-04-08
2013-01-1074
To meet the 2010 diesel engine emission regulations, an aftertreatment system was developed to reduce HC, CO, NOx and soot. In NOx reduction, a baseline SCR module was designed to include urea injector, mixing decomposition tube and SCR catalysts. However, it was found that the baseline decomposition tube had unacceptable urea mixing performance and severe deposit issues largely because of poor hardware design. The purpose of this article is to describe necessary development work to improve the baseline system to achieve desired mixing targets. To this end, an emissions Flow Lab and computational fluid dynamics were used as the main tools to evaluate urea mixing solutions. Given the complicated urea spray transport and limited packaging space, intensive efforts were taken to develop pre-injector pipe geometry, post-injector cone geometry, single mixer design modifications, and dual mixer design options.
Technical Paper

Overview of Large Diesel Engine Aftertreatment System Development

2012-09-24
2012-01-1960
The introduction of stringent EPA 2015 regulations for locomotive / marine engines and IMO 2016 Tier III marine engines initiates the need to develop large diesel engine aftertreatment systems to drastically reduce emissions such as SOx, PM, NOx, unburned HC and CO. In essence, the aftertreatment systems must satisfy a comprehensive set of performance criteria with respect to back pressure, emission reduction efficiency, mixing, urea deposits, packaging, durability, cost and others. Given multiple development objectives, a systematic approach must be adopted with top-down structure that addresses top-level technical directions, mid-level subsystem layouts, and bottom-level component designs and implementations. This paper sets the objective to provide an overview of system development philosophy, and at the same time touch specific development scenarios as illustrations.
Technical Paper

CFD Modeling of Mini and Full Flow Burner Systems for Diesel Engine Aftertreatment under Low Temperature Conditions

2012-09-24
2012-01-1949
With introductions of stringent diesel engine emission regulations, the DOC and DPF systems have become the mainstream technology to eliminate soot particles through diesel combustion under various operation conditions. Urea-based SCR has been the mainstream technical direction to reduce NOx emissions. For both technologies, low-temperature conditions or cold start conditions pose challenges to activate DOC or SCR emission-reduction performance. To address this issue, mini or full flow burner systems may be used to increase exhaust temperature to reach DOC light-off or SCR initiation temperature by combustion of diesel fuel. In essence, the burner systems incorporate a fuel injector, spray atomization, proper fuel / air mixing mechanisms, and combustion control as independent heat sources.
Technical Paper

Study of Two-Motor Hybrid Bulldozer

2014-09-30
2014-01-2376
Hybrid bulldozers use less fuel by providing better efficiency and fewer emissions, which was confirmed by one Caterpillar application of D7E in the market in 2010. To take advantages of the series hybrid bulldozer system, Chinese government launched similar hybrid bulldozer with independent double motor design. The Hybrid Bulldozer Power-Train system includes 14 components including motor, motor control system, engine, super capacitor to BMS and etc. This specific hybrid architecture, compared with D7E, removes the complicated hydraulic steering system. Instead, the steering function was developed by running both traction motors, further simplifying the power-train system. A Diesel engine is used to propel the attached generator to produce AC power which is then converted to DC power and connected with the main power link (super capacitor). DC power is finally converted back to AC to propel those two independent traction motors. CAN network is applied for communication.
Technical Paper

Development of an Integrated Box SCR System for China IV On-Highway Applications

2014-04-01
2014-01-1539
To satisfy China IV emissions regulations, diesel truck manufacturers are striving to meet increasingly stringent Oxides of Nitrogen (NOx) reduction standards. Heavy duty truck manufacturers demand compact urea SCR NOx abatement designs, which integrate injectors, NOx sensors and necessary components on SCR can in order to save packaging space and system cost. To achieve this goal, aftertreatment systems need to be engineered to achieve high conversion efficiencies, low back pressure, no urea deposit risks and good mechanical durability. Initially, a baseline Euro IV Urea SCR system is evaluated because of concerns on severe deposit formation. Systematic enhancements of the design have been performed to enable it to meet multiple performance targets, including emission reduction efficiency and low urea deposit risks via improved reagent mixing, evaporation, and distribution. Acoustic performance has been improved from the baseline system as well.
Technical Paper

Study of a Hybrid Refuse Truck with City Driving Cycles

2014-04-01
2014-01-1800
Refuse trucks are used in many communities for garbage collection and compression in China. This article introduces representative driving cycles of refuse trucks in multiple cities. System configuration is described first. Then, traditional pedal map, shift-pattern, and shift-point are used as basis to optimize energy utilization for specific hybrid configurations under refuse truck driving situation. Since AC power is used as source for garbage compression, to take advantage of such operating characteristics, engine start and stop technology can be a viable technology to improve fuel economy. Experiments are conducted to reach the conclusions.
Technical Paper

Development of Injector Closely-Coupled SCR System for Horizontal Inlet Configurations

2014-09-30
2014-01-2350
In order to satisfy China IV emissions regulations, a unique design concept was proposed with injector closely coupled with Selective Catalytic Reduction (SCR) system outer body. The benefit of this design is significant in cost reduction and installation convenience. One paper was published to describe the vertical inlet layout [1]; this work is the second part describing applications of this concept to horizontal inlet configurations. For horizontal inlet pipe, two mixing pipe designs were proposed to avoid urea deposit and meet EU IV emission regulations. Computational Fluid Dynamics (CFD) technique was used to evaluate two design concepts; experiments were performed to validate both designs. CFD computations and experiments give the same direction on ranking of the two decomposition tubes. With the straight decomposition pipe design and unique perforated baffle design, no urea deposits were found; in addition, the emission level satisfied EU IV regulations.
Technical Paper

Urea SCR System Development for Large Diesel Engines

2014-09-30
2014-01-2352
The introduction of stringent EPA 2015 regulations for locomotive / marine engines and IMO 2016 Tier III marine engines initiates the need to develop large diesel engine aftertreatment systems to drastically reduce emissions such as SOx, PM, NOx, unburned HC and CO. In essence, the aftertreatment systems must satisfy a comprehensive set of performance criteria with respect to back pressure, emission reduction efficiency, mixing, urea deposits, packaging, durability, cost and others. For on-road and off-road vehicles, urea-based SCR has been the mainstream technology to reduce NOx emissions. For category II marine engines with single cylinder displacement volumes between 7 liters and 30 liters, IMO III (Tier IV) emission regulations dictate approximately 80% reduction of NOx emissions vs. Tier II emission regulations [1]. Urea / ammonia SCR is being considered as an enabling technology to achieve IMO III regulations without significant impacts on engine performance and fuel economy.
Technical Paper

Evaluation of New 10.5″ Substrates for Heavy Duty Diesel Applications

2015-04-14
2015-01-1015
Multiple suppliers have developed new cordierite 10.5″ OD substrates in China market. One key issue is to evaluate the feasibility of their applications to diesel SCR markets. To this end, test procedures were conceived and performed towards multiple substrate characteristics. Besides typical parameters such as product dimensions, structures, and material strength, thermo-mechanical properties were characterized by hot vibration, thermal shock and thermal cycle tests. Flow performance before and after tests was characterized by a hot flow bench. Four suppliers were selected to provide product samples which went through these developed rigorous test procedures. Comparisons of multiple properties were made. Conclusions regarding their applicability and recommendations for future work are provided at the end.
X