Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 11269
Training / Education Classroom Seminars
Considerable attention has been given to the design and efficiencies of electric hybrid propulsion systems and energy storage technologies. Although they draw much less attention, hydraulic hybrid propulsion and regenerative braking systems for road vehicles are a cost effective alternative to electric systems and have relevance to important sectors of the passenger and commercial vehicle markets. In this two-day seminar, hydraulic hybrid vehicle systems and their potential will be examined using model based evaluations.
Training / Education Classroom Seminars
While most passenger car brake systems are quite robust and reliable under typical operating conditions, high-performance driving and/or racetrack operation generally require alternative design solutions to optimize consistency and longevity. Whether it is brake fluid fade, cracked rotor discs, chronic knockback, or insufficient brake pad life, the stresses of motorsports can pose unique challenges to even the very best brake system designs.
2018-06-07 ...
  • June 7, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • November 8, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
One of the most important safety critical components on cars, trucks, and aircraft is the pneumatic tire. Vehicle tires primarily control stopping distances on wet and dry roads or runways and strongly influence over-steer/under-steer behavior in handling maneuvers of cars and trucks. The inflated tire-wheel assembly also acts as a pressure vessel that releases a large amount of energy when catastrophically deflated. The tire can also serve as a fulcrum, both directly and indirectly, in contributing to vehicle rollover. This seminar covers these facets of tire safety phenomena.
2018-06-06 ...
  • June 6, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • November 7, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
The principal functions of the pneumatic tire are to generate driving, braking, and cornering forces while safely carrying the vehicle load and providing adequate levels of ride comfort. This seminar explains how tire forces and moments are generated under different operating and service conditions and, in turn, demonstrates how these forces and moments influence various vehicle responses such as braking, handling, ride, and high-speed performance. The content focuses on the fundamentals of tire behavior in automobiles, trucks, and farm tractors, but also includes experimental and empirical results, when necessary.
2018-05-21 ...
  • May 21-23, 2018 (8:00 a.m. - 5:30 p.m.) - Greer, South Carolina
  • October 15-17, 2018 (8:00 a.m. - 5:30 p.m.) - Greer, South Carolina
Training / Education Classroom Seminars
While a variety of new engineering methods are becoming available to assist in creating optimal vehicle designs, subjective evaluation of vehicle behavior is still a vital tool to deliver desired braking, handling, and other dynamic response characteristics. In order to better prepare today’s engineer for this task, this course offers twelve modules devoted to key the fundamental principles associated with longitudinal and lateral vehicle dynamics.
2018-05-08 ...
  • May 8-15, 2018 (3 Sessions) - Live Online
Training / Education Online Web Seminars
Designing a brake system requires the ability to balance a multitude of parameters against the required tradeoffs of system weight, system cost, and system performance. Understanding the basic fundamentals of how each brake component attribute contributes to the overall Force vs Deceleration behavior of the vehicle is critical to the design and release of a safe, legal and optimized system for today’s vehicles. Brake balance also is a contributing factor to other chassis control and safety systems, such as regenerative braking, ABS, and electronic brake distribution (EBD).
2018-04-30 ...
  • April 30-May 2, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • October 17-19, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Increased public pressure to improve commercial truck safety and new stopping distance regulations have intensified the need to better understand the factors influencing heavy vehicle braking performance. To assist individuals and their organizations in preparing for these new truck braking standards, this seminar focuses attendees on understanding medium-duty hydraulic brake systems and heavy-duty air brake systems and how both systems' performance can be predicted, maintained and optimized.
2018-04-23 ...
  • April 23-25, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Hydraulic brake systems, one of the most important safety features on many road vehicles today, must meet manufacturer and customer requirements in addition to Federal Motor Vehicle Safety Standards. This course will analyze automotive braking from a system's perspective, emphasizing legal requirements as well as performance expectations such as pedal feel, stopping distance, fade and thermal management. Calculations necessary to predict brake balance and key system sizing variables that contribute to performance will be discussed.
2018-04-17 ...
  • April 17-18, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
This course provides a detailed description of tire failure modes, their potential causes, identification, and the sometimes subtle nuances that go along with determination of tire failure. In addition, proper inspection techniques of tires will be discussed and samples will be available to reinforce the concepts learned. The book, Tire Forensic Investigation, authored by the instructor, is included with the course materials. This course has been approved by the Accreditation Commission for Traffic Accident Reconstruction (ACTAR) for 13 Continuing Education Units (CEUs).
2018-04-16 ...
  • April 16, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
This course provides an introduction to basic tire mechanics, including materials, sidewall stampings, pressure, tread patterns, tire inspection and basic tire failure identification of passenger and light truck tires. Practical in nature and supplemented with samples and hands-on activities, the course will provide you with information that you can use immediately on-the-job and apply to your own vehicle. It serves as a good primer for the in-depth SAE Tire Forensic Analysis course. This course has been approved by the Accreditation Commission for Traffic Accident Reconstruction (ACTAR) for 7 Continuing Education Units (CEUs).
2018-04-11 ...
  • April 11-13, 2018 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • August 6-8, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
This seminar will present an introduction to Vehicle Dynamics from a vehicle system perspective. The theory and applications are associated with the interaction and performance balance between the powertrain, brakes, steering, suspensions and wheel and tire vehicle subsystems. The role that vehicle dynamics can and should play in effective automotive chassis development and the information and technology flow from vehicle system to subsystem to piece-part is integrated into the presentation. Governing equations of motion are developed and solved for both steady and transient conditions.
2018-04-09 ...
  • April 9-10, 2018 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • October 11-12, 2018 (8:30 a.m. - 4:30 p.m.) - Palm Desert, California
Training / Education Classroom Seminars
Once reserved for high-end luxury vehicles, electronic brake control systems are now required standard equipment on even the most inexpensive cars and trucks. Today, every new vehicle benefits from the optimized braking, enhanced acceleration, and improved stability that these systems provide. This comprehensive seminar introduces participants to the system-level design considerations, vehicle interface requirements, and inevitable performance compromises that must be addressed when implementing these technologies. The seminar begins by defining the tire-road interface and analyzing fundamental vehicle dynamics.
2018-04-08 ...
  • April 8, 2018 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • October 18, 2018 (8:30 a.m. - 4:30 p.m.) - Palm Desert, California
Training / Education Classroom Seminars
The choice of brake friction materials varies per application, but each must have the appropriate coefficient of friction and be able to disperse large amounts of heat without adversely effecting braking performance. This seminar will provide an introduction to brake lining raw materials and formulation, manufacturing, quality control and testing. The course covers the critical elements that must be reviewed before arriving at a lining selection decision. Different classes of friction material and their use will be defined.
2018-03-23 ...
  • March 23, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • October 19, 2018 (8:30 a.m. - 4:30 p.m.) - Palm Desert, California
Training / Education Classroom Seminars
Brake noise is one of the highest ranked complaints of car owners. Grunts, groans, squeaks, and squeals are common descriptions of the annoying problem which brake engineers spend many hours trying to resolve. Consumer expectations and the high cost of warranty repairs are pushing the optimization of brake NVH performance. This course will provide you with an overview of the various damping mechanisms and tools for analyzing and reducing brake noise. A significant component of this course is the inclusion of case studies which will demonstrate how brake noise squeal issues have been successfully resolved.
2018-03-22 ...
  • March 22, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • October 18, 2018 (8:30 a.m. - 4:30 p.m.) - Palm Desert, California
Training / Education Classroom Seminars
Brake Noise, Vibration, and Harshness (NVH) is recognized as one of the major problems currently faced by the automotive manufacturers and their suppliers, with customers warranty claims of more than $100 million per year for each manufacturer. With increasing consumer braking performance expectations, automotive OEM’s and suppliers need the ability to predict potential problems and identify solutions during the design phase before millions of dollars have been spent in design, prototyping, and manufacturing tooling.
2018-03-14 ...
  • March 14-16, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • September 17-19, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Design and development of a modern steering system influences vehicle response to steering wheel input, driver effort, comfort, safety and fuel economy. In this interactive seminar participants will analyze the steering system from the road wheel to the steering wheel. Day one will begin with a deep dive into the anatomy and architecture of the lower steering system (wheel end, suspension geometry, linkages and steering gear), its effect on vehicle response and how forces and moments at the contact patch are converted to a torque at the pinion.
2010-04-12
Technical Paper
2010-01-0384
Aref M. A. Soliman
This paper deals with an investigation of the road roughness on the vehicle ride comfort using semi-active suspension system. A mathematical model of quarter vehicle for semi active suspension system is developed to evaluate vehicle ride comfort. The rolling resistance and power losses are also investigated. The power consumed in rolling resistance and power dissipation in suspension for passive and semi-active suspensions are evaluated. The obtained results showed that ride comfort increases as the road roughness is decreased. Comparisons between passive and semi-active suspensions systems in terms of ride performance and power dissipation are also discussed.
2010-04-12
Technical Paper
2010-01-0496
Praveen Halepatali, Christopher Ha, Ronald C. Averill
Faced with competitive environments, pressure to lower development costs and aggressive timelines engineers are not only increasingly adopting numerical simulation techniques but are also embracing design optimization schemes to augment their efforts. These techniques not only provide more understanding of the trade-offs but are also capable of proactively guiding the decision making process. However, design optimization and exploration tools have struggled to find complete acceptance and are typically underutilized in many applications; especially in situations where the algorithms have to compete with existing swift decision making processes. In this paper we demonstrate how the type of setup and algorithmic choice can have an influence and make optimization more lucrative in a new product development atmosphere. We also present some results from a design exploration activity, involving linkage and structural development, of an earth moving machine application.
2011-04-12
Technical Paper
2011-01-0269
Adam Bryant, Joseph Beno, Damon Weeks
Battlefield reconnaissance is an integral part of today's integrated battlefield management system. Current reconnaissance technology typically requires land based vehicle systems to observe while stationary or, at best, significantly limits travel speeds while collecting data. By combining current Canadian Light Armored Vehicle based reconnaissance systems with the Center for Electromechanics (CEM) electronically controlled active Electromechanical Suspension System (EMS), opportunities exist to substantially increase cross-country speeds at which useful reconnaissance data may be collected. This report documents a study performed by The University of Texas Center for Electromechanics with funding from L3-ES to use existing modeling and simulation tools to explore potential benefits provided by EMS for reconnaissance on the move.
2011-04-12
Journal Article
2011-01-0344
Gilsu Choi, Zhuxian Xu, Ming Li, Shiv Gupta, Thomas Jahns, Fred Wang, Neil A. Duffie, Laura Marlino
This paper introduces a promising approach for developing an integrated traction motor drive based on the Integrated Modular Motor Drive (IMMD) concept. The IMMD concept strives to meet aggressive power density and performance targets by modularizing both the machine and power electronics and then integrating them into a single combined machine-plus-drive structure. Physical integration of the power electronics inside the machine makes it highly desirable to increase the power electronics operating temperature including higher power semiconductor junction temperatures and improved device packaging. Recent progress towards implementing the IMMD concept in an integrated traction motor drive is summarized in this paper. Several candidate permanent magnet (PM) machine configurations with different numbers of phases between 3 and 6 are analyzed to compare their performance characteristics and key application features.
2011-04-12
Journal Article
2011-01-0268
Jeffery R. Anderson, E. Harry Law
Traditional Electronic Stability Control (ESC) for automobiles is usually accomplished through the use of estimated vehicle dynamics from simplified models that rely on parameters such as cornering stiffness that can change with the vehicle state and time. This paper proposes a different method for electronic stability control of oversteer by predicting the degree of instability in a vehicle. The algorithm is solely based on measurable response characteristics including lateral acceleration, yaw rate, speed, and driver steering input. These signals are appropriately conditioned and evaluated with fuzzy logic to determine the degree of instability present. When the “degree of instability” passes a certain threshold, the appropriate control action is applied to the vehicle in the form of differential yaw braking. Using only the measured response of the vehicle alleviates the problem of degraded performance when vehicle parameters change.
2011-04-12
Technical Paper
2011-01-0266
J.Y. Wong
With growing globalization of the economy, to gain a competitive edge in world markets shortening the product development cycle is crucial. Virtual product development is, therefore, being actively pursued in the off-road vehicle industry. To implement this process successfully, the development of comprehensive and realistic computer-aided methods for performance and design evaluation of off-road vehicles is of vital importance. To be useful to the engineer in industry for the development and design of new products, the computer-aided methods should take into account all major vehicle design parameters and pertinent terrain characteristics. They should be based on the understanding of the physical nature and the mechanics of vehicle-terrain interaction. Their capabilities should be substantiated by test data.
2011-04-12
Technical Paper
2011-01-0443
Andreas Himmler, Peter Waeltermann, Mina Khoee-Fard
Automotive technology is rapidly changing with electrification of vehicles, driver assistance systems, advanced safety systems etc. This advancement in technology is making the task of validation and verification of embedded software complex and challenging. In addition to the component testing, integration testing imposes even tougher requirements for software testing. To meet these challenges dSPACE is continuously evolving the Hardware-In-the-Loop (HIL) technology to provide a systematic way to manage this task. The paper presents developments in the HIL hardware technology with latest quad-core processors, FPGA based I/O technology and communication bus systems such as Flexray. Also presented are developments of the software components such as advanced user interfaces, GPS information integration, real-time testing and simulation models. This paper provides a real-world example of implication of integration testing on HIL environment for Chassis Controls.
2011-04-12
Technical Paper
2011-01-0438
Ahmet Kanbolat, Murathan Soner, Tolga Erdogus, Mustafa Karaagac
The parabolic leaf spring plays a vital role in suspension systems, since it has an effect on ride comfort and vehicle dynamics. Primarily, leaf spring endurance must be ensured. Presently, there are two approaches to designing a leaf spring. In the traditional method, fatigue tests should be repeated for each case, considering different material, geometry and suspension hard points. However, it takes a long time and requires a heavy budget to get the optimized solution. In the contemporary method, a numerical approach is used to obtain the fatigue life and the leaf geometry against the environmental condition on the basis of material properties. This paper presents a more precise method based on non-linear finite element solutions by evaluating the effects of the production parameters, the geometrical tolerances and the variations in the characteristics of the material.
2011-04-12
Journal Article
2011-01-0437
Mina M.S. Kaldas, Roman Henze, Ferit Küçükay
Due to the importance of the fast transportation under every circumstance, the transportation process may require a high speed heavy vehicle from time to time, which may turn the transportation process more unsafe. Due to that fact the truck safety during braking and the ride comfort during long distance travelling with high speeds should be improved. Therefore, the aim of this work is to develop a control system which combines the suspension and braking systems. The control system consists of three controllers; the first one for the active suspension system of the truck body and cab, the second one for the ABS and, the third for the integrated control system between the active suspension system and the ABS. The control strategy is also separated into two strategies.
2011-04-12
Journal Article
2011-01-0435
Yan Cui, Thomas Kurfess, Michael Messman
High fidelity mathematical vehicle models that can accurately capture the dynamics of car suspension system are critical in vehicle dynamics studies. System identification techniques can be employed to determine model type, order and parameters. Such techniques are well developed and usually used on linear models. Unfortunately, shock absorbers have nonlinear characteristics that are non-negligible, especially with regard the vehicle's vertical dynamics. In order to effectively employ system identification techniques on a vehicle, a nonlinear mathematical shock absorber model must be developed and then coupled to the linear vehicle model. Such an approach addresses the nonlinear nature of the shock absorber for system identification purposes. This paper presents an approach to integrate the nonlinear shock absorber model into the vehicle model for system identification.
2011-04-12
Journal Article
2011-01-0431
Mina M.S. Kaldas, Kemal Çalışkan, Roman Henze, Ferit Küçükay
Following the developments in controlled suspension system components, the studies on the vertical dynamics analysis of vehicles increased their popularity in recent years. The objective of this study is to develop a semi-active suspension system controller using Adaptive-Fuzzy Logic control theories together with Kalman Filter for state estimation. A quarter vehicle ride dynamics model is constructed and validated through laboratory tests performed on a hydraulic four-poster shaker. A Kalman Filter algorithm is constructed for bounce velocity estimation, and its accuracy is verified through measurements performed with external displacement sensors. The benefit of using adaptive control with Fuzzy-Logic to maintain the optimal performance over a wide range of road inputs is enhanced by the accuracy of Kalman Filter in estimating the controller inputs. A gradient-based optimization algorithm is applied for improving the Fuzzy-Logic controller parameters.
2011-04-12
Technical Paper
2011-01-0430
Aref M. A. Soliman
In this study, LQR control design is presented for the control of a vehicle active suspension system. Seven degrees of freedom, full vehicle model is used. LQR control system is prepared as well as adaptive LQR control system (gain scheduling strategy) to study the effect of each control system using the active suspension on ride performance. The acceleration and dynamic tyre load are evaluated. For the time domain analysis, different road conditions are considered in order to reveal the performance of the two controllers. The simulation results showed that adaptive LQR control system gives a better ride performance compared with LQR control system. Also, the comparison between these control strategies are discussed.
2011-04-12
Technical Paper
2011-01-0429
Mathew Kuttolamadom, Joshua Jones, Laine Mears, John Ziegert, Thomas Kurfess
For incorporating titanium components onto a vehicle in place of existing iron/steel components, there is a need for a methodical procedure to ensure successful and efficient integration. This involves a refinement over standard lightweight engineering procedures. In this paper, a suitable procedure is developed for replacing a structural component with titanium and the method realized. Design and manufacturing issues associated with integrating titanium are identified and addressed. The importance of justifying component replacement in terms of life-cycle costs rather than purely by the manufacturing cost alone is also emphasized.
2011-04-12
Technical Paper
2011-01-0453
Horst Salzwedel
The rapid increase of networked electronic control units in airplanes (Line Replaceable Units or Modules, LRUs/LRMs) and automobiles (ECUs) requires to move from CAN buses to higher performance buses. In aircraft the number of LRUs exceeded 100 in 1990 (B777) and is now ≻5000 (A380). Today, the number of ECUs in some automobiles also exceeds 100. Aircraft industry developed solutions based on standard switched Ethernet (AFDX) and standardized ECUs, called Integrated Modular Avionic units (IMA units) and common remote data concentrators (cRDCs) that are now flying in the Airbus A380 and A400M, the Boeing B787, and are being used in the design of future civil and military aircraft. During the last decade, automotive industry has been pursuing the development of specialized FlexRay bus solutions for automotive control and specialized MOST bus solutions for comfort electronics. However, some automotive companies are now also looking at Ethernet-based solutions.
Viewing 1 to 30 of 11269

Filter

  • Range:
    to:
  • Year: